Skip to main content

Diversity and Biotechnological Potential of Culturable Rhizospheric Actinomicrobiota

  • Chapter
  • First Online:
Advances in Plant Microbiome and Sustainable Agriculture

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 19))

Abstract

The interface of plant root and soil is the most active region where major parts of maximum number of cycles occur that leads to the accumulation of diverse chemicals of microbial origin. Soil is one of the most diverse terrestrial ecosystems. Within soil, rhizosphere is the most active fraction where interaction between biotic and abiotic components attracts enumerable microorganisms. Thus rhizosphere becomes the important hotspot of biotechnological interest. The root secreted compounds play significant roles either as chemo attractants or as repellants in the rhizospheric region immediately surrounding the root system. Plant root exudates are able to control the soil microbial community in their immediate proximity; interact with herbivores, i.e., primary consumers; encourage positive interactions like beneficial symbioses; influence some physicochemical soil parameters; and also restrict the growth of competitor species. Root-microbe cross talk are either positive, i.e., mutualistic to the plant, or negative, i.e., antagonistic to the plant species. Members of phylum actinobacteria are widely distributed in nature and have been isolated from several extreme environments (drought, high temperatures, pressure, pH, salinities) and are associated with plants growing in different habitats. Actinobacteria are of agricultural importance as they can promote plant growth and improve nutrition of plant by direct plant growth-promoting mechanisms, like fixation of nitrogen; solubilization of phosphorus, potassium, and zinc; production of plant growth promotors; and ACC deaminases, or by indirect mechanisms such as the production of ammonia, antibiotics, hydrogen cyanide, lytic enzymes, and siderophores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-allah N, Tolba S, Hatem D (2012) Selective isolation of rare actinomycetes from different types of Egyptian soil. Egypt J Exp Biol 8:175–182

    Google Scholar 

  • Abidin ZAZ, Chowdhury AJK, Malek NA, Zainuddin Z (2018) Diversity, antimicrobial capabilities, and biosynthetic potential of mangrove actinomycetes from coastal waters in Pahang, Malaysia. J Coast Res 82:174–179

    CAS  Google Scholar 

  • Adegboye MF, Babalola OO (2016) Isolation and identification of potential antibiotic producing rare actinomycetes from rhizospheric soils. J Hum Ecol 56:31–41

    Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He W, Zhou W et al (2015) Reduced dependence if rhizospheric microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78

    CAS  Google Scholar 

  • Álvarez-Pérez JM, González-García S, Cobos R, Olego MÁ, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR (2017) Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl Environ Microbiol 83:e01564–e01517

    PubMed  PubMed Central  Google Scholar 

  • Ames RN, Reid CP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. New Phytol 96:555–563

    Google Scholar 

  • Anusree T, Suseela BR (2017) Distribution, diversity and antagonistic ability of actinobacteria from black pepper (Piper nigrum L.). Rhizosphere J Global Biosci 6(10):5260–5288

    Google Scholar 

  • Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric actinomycetes for various in-vitro and in-vivo Plant Growth Promoting (PGP) traits and for agroactive compounds. Front Microbiol 7:1334

    PubMed  PubMed Central  Google Scholar 

  • Bais HP, Loyola Vargas VM, Flores HE, Vivanco JM (2001) Root specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741

    CAS  Google Scholar 

  • Barr M, East AK, Leonard M, Mauchline TH, Poole PS (2008) In vivo expression technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34 expressed in the rhizosphere. FEMS Microbiol Lett 282:219–227

    CAS  PubMed  Google Scholar 

  • Barreto TR, da Silva ACM, Soares ACF, de Souza JT (2008) Population densities and genetic diversity of actinomycetes associated to the rhizosphere of Theobroma cacao. Braz J Microbiol 39:464–470

    PubMed  PubMed Central  Google Scholar 

  • Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol 49(1):533–555

    CAS  PubMed  Google Scholar 

  • Bengough AG, McKenzie BM (1997) Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J Exp Bot 48(309):885–893

    CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    CAS  PubMed  Google Scholar 

  • Bouizgarne B, Lanoot B, Loqman S, Sproer C, Klenk HP, Swings J, Ouhdouch Y (2009) Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L. Int J Syst Evol Microbiol 59:2857–2863

    CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119:417–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson DT, Marschner H (1995) Mineral nutrition of higher plants second edition. 889pp. Annals of Botany. London, Academic Press, 78 (4):527–528

    Google Scholar 

  • Daily GC, Matson PA, Vitousek PM (1997) Ecosystem services supplied by soil. In: Daily DC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 113–132

    Google Scholar 

  • Damam M, Moinuddin MK, Kausar R (2016) Actinomycetes from rhizosphere of some forest medicinal plants. Int J ChemTech Res 9(05):521–528

    CAS  Google Scholar 

  • De la Peña C, Vivanco JM (2010) Root-microbe interactions: the importance of protein secretion. Curr Proteom 7(4):265–274

    Google Scholar 

  • De la Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255

    Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    CAS  PubMed Central  Google Scholar 

  • Fitter A (1996) Characteristics and functions of root systems. In: Waisel EAY, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Flores A, Briand JF, Gadal O, Andrau JC, Rubbi L, VanMullem V, Boschiero C, Goussot M, Marck C, Carles C, Thuriaux P, Sentenac A, Werner M (1999) A protein-protein interaction map of yeast RNA polymerase III. Proc Natl Acad Sci 96(14):7815–7820

    CAS  PubMed  Google Scholar 

  • Fray RG (2002) Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89(3):245–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gad AH (2017) Phylogenetic diversity and anti- MRSA activity of halotolerant actinobacteria from sediments in Great Salt Plains, Oklahoma. https://doi.org/10.1101/112649

  • George M, Anjumol A, George G, Hatha AM (2012) Distribution and bioactive potential of soil actinomycetes from different ecological habitats. Afr J Microbiol Res 6(10):2265–2271

    Google Scholar 

  • Germida JJ, Sicilliano SD, de Freitas RJ, Seib AM (1998) Diversity of root-associated with field grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    CAS  Google Scholar 

  • Gonzalez-Franco AC, Robles-Hernandez L, Nunez-Barrios A, Strap JL, Crawford DL (2009) Molecular and cultural analysis of seasonal actinomycetes in soils fromArtemisia tridentata habitat. ΦYTON 9457(78):83–90

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    CAS  PubMed  Google Scholar 

  • Gopinath LR, Premalatha K, Jothi G, Archaya S, Rajamuni P, Suresh Kumar BT (2018) Isolation and screening of effective antibiotic producing actinomycetes from rhizosphere soil of Cipadessa baccifera and Clausena dentata. IOSR J Biotechnol Biochem 4(5):39–47

    Google Scholar 

  • Graham J, Leonard R, Menge A (1981) Membrane-mediated decrease in root exudation responsible for Phorphorus inhibition of vesicular-Arbuscular Mycorrhiza formation. Plant Physiol 68(3):548–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huanga Y (2015) Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 81:3086–3103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    CAS  Google Scholar 

  • Hawes M, Gunawardena U, Miyasaka S, Xiaowen Z (2000) The role of border cells in plant defence. Trends Plant Sci 5:128–133. https://doi.org/10.1016/S1360-1385(00)01556-9

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Ishizawa K, Nonomura H (1988) Distribution of rare actinomycetes in Japanese soils. J Ferment Technol 66:367–373

    Google Scholar 

  • Henis Y (1986) Soil microorganisms, soil organic matter and soil fertility. In: Chen Y, Avnimelech Y (eds) The role of organic matter in modern agriculture. Martinus Nijhoff, Dordrecht, pp 159–168

    Google Scholar 

  • Hiltner L (1904) Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache. Arb Deut Landw Gesell 98:59–78

    Google Scholar 

  • Intra B, Mungsuntisuk I, Nihira T, Igarashi Y, Panbangred W (2011) Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. Intra et al. BMC Res Notes 4:98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jose PA, Sivakala KK, Rajeswari P, Jebakumar SRD (2014) Characterization of antibiotic producing rare actinomycete Nonomuraea sp. JAJ18 Derived from an Indian Coastal Solar Saltern. Sci World J 2014:1–7. Hind Article ID 456070

    Google Scholar 

  • Kaur H, Gangwar M, Kalia A (2015) Diversity of actinomycetes from fodder leguminous plants and their biocontrol potential. Int J Adv Res 3(8):1141–1151

    CAS  Google Scholar 

  • Kaur J, Gangwar M, Kaur S (2017) Screening of endophytic and rhizospheric actinomycetes with potential application for biocontrol of Fusarium wilt of Gladiolus. Int J Curr Microbiol App Sci 6(7):1345–1355

    CAS  Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, et al. (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 1–17. https://doi.org/10.1016/B978-0-12-820528-0.00002-8

  • Khamna S, Yokota A, Lumyong S (2009a) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    CAS  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2009b) Antifungal activity of Streptomyces spp. isolated from rhizosphere of Thai medicinal plants. Int J Integr Biol 6(3):143

    CAS  Google Scholar 

  • Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant-Microbe Interact 14(6):775–784

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Rastegari AA, Saxena AK (2020b) Microbial biofilms: functional annotation and potential applications in agriculture and allied sectors. In: Yadav MK, Singh BP (eds) New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Elsevier, Cambridge, MA, pp 283–301. https://doi.org/10.1016/B978-0-444-64279-0.00018-9

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020c) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020d) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kumar V, Bisht GS, Gusain O (2013) Terrestrial actinomycetes from diverse locations of Uttarakhnad, India: isolation and screening for their antibacterial activity. Iran J Microbiol 5(3):299–308

    PubMed  PubMed Central  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A, Singh D (2019) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  • Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78:399–405

    CAS  PubMed  Google Scholar 

  • Lechevalier MP (1988) Actinomycetes in agriculture and forestry. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, San Diego, pp 327–358

    Google Scholar 

  • Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, Mutalib NS, Chan KG (2014) Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Sci World J 2014:1–14. Article ID 698178 Hindawi

    Google Scholar 

  • Li SR, Zhao GS, Sun MW, He HG, Wang HX, Li YY, Lu CH, Shen YM (2014) Identification and characterization of the biosynthetic gene cluster of divergolides from Streptomyces sp. W112. Gene 544(1):93–99

    CAS  PubMed  Google Scholar 

  • Loqman S, Barka EA, Clément C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91

    Google Scholar 

  • Loria R, Bukhalid RA, Fry BA, King RR (1997) Plant pathogenicity in the genus Streptomyces. Plant Dis 77:836–846

    Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano AG, Rolfe BG (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muangham S, Pathom-aree W, Duangmal K (2015) Melanogenic actinomycetes from rhizosphere soil antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits. Can J Microbiol 61:164–170

    CAS  PubMed  Google Scholar 

  • Nabti E, Bensidhoum L, Tabli N, Dahel D, Weiss A, Rothballer M, Schmid M, Hartmann A (2014) Growth stimulation of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. Eur J Soil Biol 61:20–26

    CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41(5):653–658

    CAS  PubMed  Google Scholar 

  • Ostash B, Gren T, Hrubskyy Y, Tistechok S, Beshley S, Volodymyr Baranov V, Fedorenko V (2013) Cultivable actinomycetes from rhizosphere of birch (Betula pendula) growing on a coal mine dump in Silets, Ukraine. J Basic Microbiol:1–7

    Google Scholar 

  • Pascual J, Blanco S, García-López M, García-Salamanca A, Bursakov SA, Genilloud O (2016) Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture dependent and independent approaches. PLoS One 11(1):0146558

    Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    CAS  PubMed  Google Scholar 

  • Poomthongdee N, Duangmal K, Pathomaree W (2014) Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J Antibiot:1–9

    Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1(3):243–257

    CAS  PubMed  Google Scholar 

  • Rajawat MVS, Singh R, Singh D, Yadav AN, Singh S, Kumar M, Saxena AK (2020) Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz J Microbiol 51:751–764. https://doi.org/10.1007/s42770-019-00210-2

  • Rakesh KN, Junaid S, Dileep N, Prashith Kekuda TR (2013) Antibacterial and antioxidant activities of Streptomyces sp. SRDP-H03 isolated from soil of Hosudi, Karnataka. India J Drug Deliv Ther 3(4):47–53

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V, Suman A, Dhaliwal HS (2020a) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India, Sect B Biol Sci. https://doi.org/10.1007/s40011-020-01168-0

  • Rana KL, Kour D, Yadav AN, Yadav N, Saxena AK (2020b) Agriculturally important microbial biofilms: biodiversity, ecological significances, and biotechnological applications. In: Yadav MK, Singh BP (eds) New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Elsevier, Cambridge, MA, pp 221–265. https://doi.org/10.1016/B978-0-444-64279-0.00016-5

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav N, Yadav AN (2020c) Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. In: Kumar A, Singh VK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 231–262. https://doi.org/10.1016/B978-0-12-818734-0.00010-3

    Chapter  Google Scholar 

  • Rani KRB, Sundar SK, Murugan M (2016) Study of the diversity of root associated microorganisms of medicinal plant Alpinia galanga. Res J Pharm, Biol Chem Sci 7(3):1270

    Google Scholar 

  • Ranjard L, Richaume A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716

    CAS  PubMed  Google Scholar 

  • Rante H, Yulianty R, Usmar, Djide N, Subehan, Burhamzah R, Prasad MB (2017) Actinomycetes of Orthosiphon stamineus rhizosphere as producer of antibacterial compound against multidrug resistant bacteria. IOP Conf Ser: Mater Sci Eng 259:012003

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Raut RA, Kulkarni SW (2018) Isolation, characterization and biodiversity of actinomycetes from rhizosphere soil of some medicinal plants. Int J Recent Tren Sci Technol Spec Issue 2018:13–18

    Google Scholar 

  • Retnowati Y, Sembiring L, Moeljopawiro S, Djohan TS, Soetarto S (2017) Diversity of antibiotic-producing Actinomycetes in mangrove forest of Torosiaje, Gorontalo, Indonesia. Biodiversitas 18(3):1453–1461

    Google Scholar 

  • Roy S, Banerjee D (2014) Distribution of endophytic actinomycetes of three medicinal plants and evaluation of their antibacterial potencies. J Adv Microbiol 1:218–226

    Google Scholar 

  • Ryandini D, Radjasa OK, Oedjijono (2018) Isolate actinomycetes SA32 origin of Segara Anakan mangrove rhizosphere and its capability in inhibiting multi-drugs resistant bacteria growth. J Microb Biochem Technol 10:1

    Google Scholar 

  • Sakure S, Limbore A, Zalake M, Jaigude S (2015) Isolation and characterization of Actinomycetes from rhizosphere soil of different plants for anti-phytopathogenic activity and stress tolerance. Int J Curr Microbiol App Sci 2:379–387

    Google Scholar 

  • Salomon MV, Purpora R, Bottini R, Piccoli P (2016) Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiol Biochem 106:295–304

    CAS  PubMed  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M et al (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

  • Solans M, G Vobis, L Jozsa, LG (2016) Wall Synergy of Actinomycete co-inoculation. In Plant growth promoting Actinobacteria, pp. 161–177. Springer, Singapore

    Google Scholar 

  • Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK (2016) Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol 47(1):85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan MC, Laxman RS, Deshpande MV (1991) Physiology and nutrition aspects of actinomycetes—an overview. World J Microbiol Biotechnol 7:171–184

    CAS  PubMed  Google Scholar 

  • Sujatha T (2018) Isolation of antagonistic actinomycetes species from rhizosphere of cotton crop. J Innov Pharma Biol Sci 5(1):74–80

    CAS  Google Scholar 

  • Suzuki S, Yamamoto K, Okuda T, Nishio M, Nakanishi N, Komatsubara S (2000) Selective isolation and distribution of Actinomadura rugatobispora strains in soil. Actinomycetology 14:27–33

    Google Scholar 

  • Thangapandian V, Ponmurugan P, Ponmurugan K (2007) Actinomycetes diversity in the rhizosphere soils of different medicinal plants in Kolly hills-Tamilnadu, India, for secondary metabolite production. Asian J Plant Sci 6(1):66–70

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  PubMed  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon T, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Google Scholar 

  • Velayudham S, Kasi Murugan K (2012) Diversity and antibacterial screening of actinomycetes from Javadi Hill forest soil, Tamilnadu, India. J Microbiol Res 2(2):41–46

    Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Wahyudi AT, Priyanto JA, Afrista R, Kurniati D, Astuti RI, Akhdiya A (2019) Plant growth promoting activity of actinomycetes isolated from soybean rhizosphere. OnLine J Biol Sci 19(1):1–8

    CAS  Google Scholar 

  • Waksman SA, Schatz A (1943) Strain specificity and production of antibiotic substances. Proc Natl Acad Sci. USA, 29(2):74

    Google Scholar 

  • Wang P, Marsh EL, Ainsworth EA, Leakey ADB, Sheflin AM, Schachtman DP (2017) Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci Rep 7(1):15019

    PubMed  PubMed Central  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633

    CAS  Google Scholar 

  • Xue L, Xue Q, Chen Q, Lin C, Shen G, Zhao J (2013) Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Prot 43:231–240

    Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6:38–41

    Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A et al (2015) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B et al (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. https://doi.org/10.19080/IJESNR.2017.03.555601

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, Singh BP, Saxena AK, Dhaliwal HS (2018) Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: Singh BP, Gupta VK, Passari AK (eds) New and future developments in microbial biotechnology and bioengineering, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Los Angeles, pp 305–332

    Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP et al (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019) Recent advancement in white biotechnology through fungi. Volume 1: Diversity and enzymes perspectives, Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Google Scholar 

  • Yan LL, Han NN, Zhang YQ, Yu LY, Chen J, Wei YZ, et al. (2010) Antimycin A18 produced by an endophytic Streptomyces albidoflavus isolated from a mangrove plant. J Antibiot 63(5):259–261

    Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol 4:359–365

    CAS  PubMed  Google Scholar 

  • Zhang J, Wang JD, Liu CX, Yuan JH, Wang XJ, Xiang WS (2014) A new prenylated indole derivative from endophytic actinobacteria sp. neau-D50. Nat Prod Res 28(7):431–437

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X (2017) Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem 104:208–217

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, S., Santra, H.K., Banerjee, D. (2020). Diversity and Biotechnological Potential of Culturable Rhizospheric Actinomicrobiota. In: Yadav, A., Rastegari, A., Yadav, N., Kour, D. (eds) Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-15-3208-5_7

Download citation

Publish with us

Policies and ethics