Skip to main content

On the Quantum Capacitance of Quantum Wire Field-Effect Transistors of Compound Semiconductors

  • Chapter
  • First Online:
Book cover Emerging Trends in Terahertz Solid-State Physics and Devices

Abstract

This chapter explores the quantum capacitance (\( C_{\text{g}} \)) in quantum wire field-effect transistors (QWFETs) manufactured from completely different technologically vital nonstandard materials by using all types of anisotropies of band structures in addition to splitting of bands due to large fields of the crystals inside the framework of Kane’s matrix methodology that successively generates new 1D dimensional electron energy versus wave vector relation. We derive the \( C_{\text{g}} \)  under very low temperature so that the Fermi function tends to unity for QWFETs of \( {\text{Cd}}_{3} {\text{As}}_{2} ,{\text{CdGeAs}}_{2} ,{\text{InSb}},{\text{Hg}}_{1 - x} {\text{Cd}}_{x} {\text{Te}},{\text{InAs}},{\text{GaAs}},{\text{In}}_{1 - x} {\text{Ga}}_{x} {\text{As}}_{y} {\text{P}}_{1 - y} \) IV–VI, stressed materials,\( {\text{Te}},{\text{GaP,PtSb}}_{2} ,{\text{Bi}}_{2} {\text{Te}}_{3} ,{\text{Ge}},{\text{GaSb}} \) and II–V compounds using the appropriate band models. The \( C_{\text{g}} \) becomes the functions of the thickness of the quantum-confined transistors. The \( C_{\text{g}} \) varies with varying film thickness in various quantized steps and saw-tooth manners with different numerical values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.P. Ghatak, M. Mondal, J. Appl. Phys. 70, 299 (1991)

    Article  ADS  Google Scholar 

  2. K.P. Ghatak, S.N. Biswas, J. Vac. Sci. Technol. 7B, 104 (1989)

    Article  Google Scholar 

  3. B. Mitra, K.P. Ghatak, J. Solid-State Electron. 32, 177 (1989)

    Article  ADS  Google Scholar 

  4. K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987)

    Article  ADS  Google Scholar 

  5. M. Mondal, K.P. Ghatak, J. Magn. Magn. Mater. 62, 115 (1986)

    Article  ADS  Google Scholar 

  6. M. Mondal, K.P. Ghatak, J. Phys. Scr. 31, 613 (1985)

    Article  ADS  Google Scholar 

  7. K.P. Ghatak, M. Mondal, J. Zeitschrift für Physik B Condens Matter. 64, 223 (1986)

    Article  ADS  Google Scholar 

  8. K.P. Ghatak, S.N. Biswas, J. Solid-State Electron. 37, 1437 (1994)

    Article  ADS  Google Scholar 

  9. K.P. Ghatak, N. Chattopadhyay, M. Mondal, J. Appl. Phys. A 48, 365 (1989)

    Article  ADS  Google Scholar 

  10. K.P. Ghatak, M. Mondal, Z. fur Physik B 64, 223 (1986)

    Article  Google Scholar 

  11. K.P. Ghatak, S.N. Biswas, Sol. State Electron. 37, 1437 (1994)

    Article  ADS  Google Scholar 

  12. D.R. Choudhury, A.K. Chowdhury, K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b) 98, K141 (1980)

    Article  ADS  Google Scholar 

  13. A.N. Chakravarti, A.K. Chowdhury, K.P. Ghatak, Phys. Stat. Sol. (a) 63, K97 (1981)

    Article  ADS  Google Scholar 

  14. M. Mondal, K.P. Ghatak, Acta Phys. Polon. A 67, 983 (1985); M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 128, K21 (1985)

    Google Scholar 

  15. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (a) 93, 377 (1986)

    Article  ADS  Google Scholar 

  16. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 135, 819 (1986)

    Article  ADS  Google Scholar 

  17. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 139, 185 (1987)

    Article  ADS  Google Scholar 

  18. K.P. Ghatak, N. Chattopadhyay, S.N. Biswas, OE/Fibers’ 87, 203 (1987)

    Google Scholar 

  19. K.P. Ghatak, N. Chatterjee, M. Mondal, Phys. Stat. Sol. (b) 139, K25 (1987)

    Article  ADS  Google Scholar 

  20. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1988); K.P. Ghatak, A. Ghosal, Phys. Stat. Sol. (b) 151, K135 (1989); K P. Ghatak, N. Chattopadhyay, M. Mondal, Phys. A 48, 365 (1989)

    Google Scholar 

  21. P.K. Das, K.P. Ghatak, J. Nanosci. Nanotechnol. 19, 2909 (2019); K.P. Ghatak, S. Chakrabarti, B. Chatterjee, Mater. Focus 7, 361 (2018); K.P. Ghatak, S. Chakrabarti, B. Chatterjee, P.K. Das, P. Dutta, A. Halder, Mater. Focus 7, 390 (2018); B. Chatterjee, N. Debbarma, M. Mitra, T. Datta, K.P. Ghatak, J. Nanosci. Nanotechnol. 17, 3352 (2017)

    Google Scholar 

  22. K.P. Ghatak, D. De, Mater. Focus 6, 114 (2017); P.K. Das, P. Dutta, A. Halder, J. Pal, N. Debbarma, S. Debbarma, K.P. Ghatak, Mater. Focus 6, 167 (2017); P.K. Das, P. Dutta, A. Halder, R. Bhattacharjee, K.P. Ghatak, Mater. Focus 6, 133 (2017); R. Bhattacharjee, K.P. Ghatak, J. Nanosci. Nanotechnol. 17, 640 (2017)

    Google Scholar 

  23. M. Mitra, T.N. Sen, T. Datta, R. Bhattacharjee, L.S. Singh, K.P. Ghatak, J. Nanosci. Nanotechnol. 17, 256 (2017); T.N. Sen, K.P. Ghatak, Quantum Matter 5, 732 (2016); T.N. Sen, K.P. Ghatak, Quantum Matter 5, 721 (2016); K.P. Ghatak, K. Sarkar, S. Chakrabarti, M. Kumar, M. Debbarma, T.N. Sen, M. Chakraborty, Rev. Theor. Sci. 4, 199 (2016)

    Google Scholar 

  24. R. Bhattacharya, K. Sarkar, M. Kumar, B. Chatterjee, K.P. Ghatak, Quantum Matter 5, 557 (2016); K.P. Ghatak, K. Sarkar, N. Debbarma, L. Suraj Singh, Quantum Matter 5, 427 (2016); K.P. Ghatak, D. De, J. Nanoeng. Nanomanuf. 6, 1 (2016); S.K. Biswas, M. Mitra, K.P. Ghatak, J. Nanoeng. Nanomanuf. 6, 63 (2016)

    Google Scholar 

  25. N. Paitya, K.P. Ghatak, Quantum Matter 5, 191 (2016); B. Chatterjee, S. Chakrabarti, S.K. Sen, M. Mitra, K.P. Ghatak, Quantum Matter 5, 85 (2016); K.P. Ghatak, in Magneto Thermoelectric Power in Heavily Doped Quantized Structures (Series on the Foundations of Natural Science and Technology, World Scientific Publishing Company, 2016), vol. 7, pp. 758; K.P. Ghatak, in Dispersion Relations in Heavily-Doped Nanostructures (Springer International Publishing, 2016), p. 615

    Google Scholar 

  26. B. Chatterjee, K. Sarkar, K.P. Ghatak, in Advances in Optical Science and Engineering (Springer India, 2015), p. 621; K.P. Ghatak, in Einstein’s Photoemission (Springer International Publishing, 2015), p. 295

    Google Scholar 

  27. S.M. Adhikari, K.P. Ghatak, J. Adv. Phys. 2, 130 (2013); S. Bhattacharya, D. De, S. Ghosh, K.P. Ghatak, J. Comput. Theor. Nanosci. 10, 664 (2013); N. Paitya, S. Bhattacharya, D. De, S. Ghosh, K.P. Ghatak, J. Nanoeng. Nanomanuf. 2, 211 (2012)

    Google Scholar 

  28. S. Pahari, S. Bhattacharya, K.P. Ghatak, J. Comput. Theor. Nanosci. 6, 2088 (2009); L.J. Singh, S. Choudhury, S. Singha Roy, K.P. Ghatak, Electr. Eng. 87, 19 (2005); P.K. Chakraborty, G.C. Datta, K.P. Ghatak, Phys. Scr. 68, 368 (2003)

    Google Scholar 

  29. K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 1292 (2002); K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 1296 (2002); K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, Proceedings-SPIE Int. Soc. Opt. Eng. 2, 1296 (2002); K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 347 (2002)

    Google Scholar 

  30. K.P. Ghatak, P.K. Bose, J.P. Banerjee, SPIE Proc. Ser. 4746, 351 (2002); K.P. Ghatak, SPIE Proc. Ser. 4746, 292 (2002); K.P. Ghatak, J. Wave Mater. Interact. 14, 157 (1999); K.P. Ghatak, P.K. Bose, J. Wave Mater. Interact. 12, 53 (1997); K.P. Ghatak, B. Nag, J. Wave Mater. Interact. 12, 85 (1997); B. Mitra, D.K. Basu, B. Nag, K.P. Ghatak, Nonlinear Optics-Read. 17, 171 (1997); K.P. Ghatak, P.K. Bose, J. Wave Mater. Interact. 12, 60 (1997); P.K. Bose, KP Ghatak, J. Wave Mater. Interact. 12, 67 (1997)

    Google Scholar 

  31. K.P. Ghatak, P.K. Bose, G. Majumder, MRS Proc. 494, 157 (1997); K.P. Ghatak, D.K. Basu, D. Basu, B. Nag, Il Nuovo Cimento D 18, 947 (1996); K.P. Ghatak, S. Dutta, A. Ali, S. Banerjee, B. Nag, J. Wave Mater. Interact. 11, 127 (1996); P.K. Chakrabarty, B. Nag, S. Dutta, K.P. Ghatak, J. Wave Mater. Interact. 11, 55 (1996)

    Google Scholar 

  32. B. Nag, P.K. Chakrabarty, K.P. Ghatak, J. Wave Mater. Interact. 11, 211 (1996); K.P. Ghatak, P.K. Chakrabarty, B. Nag, J. Wave Mater. Interact. 11, 159 (1996); K.P. Ghatak, S.N. Banik, FIZIKA A-ZAGREB 5, 31 (1996)

    Google Scholar 

  33. K.P. Ghatak, J.P. Banerjee, P.K. Chakrabarty, B. Nag, J. Wave Mater. Interact. 11, 166 (1996); P.K. Chakraborty, B. Nag, S. Dutta, K.P. Ghatak, J. Wave Mater. Interact. 11, 111 (1996)

    Google Scholar 

  34. K.P Ghatak, S. Bera, A. Ali, B. Nag, FIZIKA A-ZAGREB 5, 111 (1996); K.P. Ghatak, J.P. Banerjee, B. Goswami, B. Nag, Nonlinear Optics-Read. 16, 241 (1996); K.P. Ghatak, M. Mitra, B. Goswami, B. Nag, Nonlinear Optics-Read. 16, 167 (1996); K.P. Ghatak, D. Bhattacharya, D. Basu, B. Nag, Phys. Status Sol. (b) 191, 141 (1995)

    Google Scholar 

  35. K.P. Ghatak, B. Nag, M. Mitra, J.P. Bannerjee, J. Wave Mater. Interact. 10, 11 (1995); K.P. Ghatak, D.K. Basu, B. Nag, J. Wave Mater. Interact. 10, 29 (1995); K.P. Ghatak, S. Dutta, D. Basu, B. Nag, J. Wave Mater. Interact. 10, 1 (1995)

    Google Scholar 

  36. K.P Ghatak, B. Nag, G. Mazumder, MRS Proc. 379, 85 (1995); K.P. Ghatak, B. Nag, G. Mazumder, MRS Proc. 379, 109 (1995); K.P. Ghatak, S. N Banik, FIZIKA A 3, 155 (1994); S.N. Banik, K.P. Ghatak, S.N. Biswas, FIZIKA A 3, 77 (1994); K.P. Ghatak, Fizika A 2, 133 (1993); K.P. Ghatak, S.N. Biswas, MRS Proc. 313, 375 (1993); K.P. Ghatak, S.N. Biswas, MRS Proc. 308, 445 (1993)

    Google Scholar 

  37. K.P. Ghatak, D. Bhattacharyya, J. Wave Mater. Interact. 8, 233 (1993); K.P. Ghatak, S.N. Biswas, Acta Phys. Slovaca 43, 425 (1993); K.P. Ghatak, S.N. Biswas, Nanostruct. Mater. 2, 91 (1993)

    Google Scholar 

  38. K.P. Ghatak, M. Mondal, Fizika A 1, 113 (1992); K.P. Ghatak, B. De, MRS Proc. 262, 911 (1992); K.P. Ghatak, B. De, MRS Proc. 242, 373 (1992); K.P. Ghatak, B. De, MRS Online Proc. Libr. Archive 228, (1992); K.P. Ghatak, Fizika A 1, 197 (2006)

    Google Scholar 

  39. K.P. Ghatak, S. Bhattacharyya, S.N. Biswas, Acta Phys. Hung. 70, 83 (1991); K.P. Ghatak, Acta Phys. Hung. 69, 121 (1991); K.P. Ghatak, B. De, MRS Proc. 234, 59 (1991); K.P. Ghatak, B. De, MRS Proc. 234, 55 (1991); K.P. Ghatak, Acta Phys. Hung. 68, 253 (1990); K.P. Ghatak, Acta Phys. Hung. 67, 407 (1990); K.P. Ghatak, MRS Proc. 216, 469 (1990); K.P. Ghatak, MRS Proc. 216, 465 (1990)

    Google Scholar 

  40. K.P. Ghatak, B. De, M. Mondal, S.N. Biswas, MRS Proc. 184, 261 (1990); K.P. Ghatak, B. De, M. Mondal, S.N. Biswas, MRS Proc. 198, 333 (1990); B. Mitra, K.P. Ghatak, Solid-State Electron. 32, 810 (1989); K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987); S.N. Biswas, K.P. Ghatak, Megagauss Technol. Pulsed Power Appl. 8, 219 (1987); M. Mondal, K.P. Ghatak, Czechoslovak J. Phys. 36, 1396 (1986); A. Arti, K.P. Ghatak, K.K. Ghosh, S. Ghosh, A. Dhar, Physica Status Solidi B-Basic Res. 103, K55(1981)

    Google Scholar 

  41. S. Bhattacharya, K.P. Ghatak, Fowler-Nordheim Field Emission, Springer Series in Solid-State Sciences, vol. 170 (Springer-Verlag, Germany, 2012), pp. 1–338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Ghatak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seikh, A.H., Alharthi, N., Bose, P.K., Ghatak, K.P. (2020). On the Quantum Capacitance of Quantum Wire Field-Effect Transistors of Compound Semiconductors. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H., Roy, J. (eds) Emerging Trends in Terahertz Solid-State Physics and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_7

Download citation

Publish with us

Policies and ethics