Skip to main content

Semantic Web-Based Knowledge Extraction: Upper Ontology Guided Crime Knowledge Discovery

  • Conference paper
  • First Online:
Advanced Computing Technologies and Applications

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 936 Accesses

Abstract

With the current trends and developments in the information technology domain, there is a high enthusiasm for using semantic Web technologies and decision analysis mechanisms to solve numerous recurring issues in societies. There are plenty of existing knowledge models available on the Internet, developed for solving various problems. But, the reusability aspects of those are almost very low, due to main barriers, such as complexities associated with schema understanding, technical barriers associated with querying and comprehension of semantic representations. This will hinder the reusability of existing knowledge models and also knowledge dissemination associated with new and existing knowledge models. These consequences are obstructing the opportunities of experiencing the advancements of semantic technologies to both technical and non-technical audiences. This research is focusing on proposing an architectural structure leading towards a framework, to resolve most of the above-listed technical barriers and open doors to wider audiences in experiencing the benefits of the semantic Web. The proposed architectural structure is a combination of an instructional upper ontology and multiples of decision support systems integrated to the endpoints of the upper ontology. Crime domain is selected for the proposal of the high-level architectural design, leading towards a framework, as crime escalation has been a crucial concern which needs timely attention to under control the further spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghani ZA (2017) A comparative study of urban crime between Malaysia and Nigeria. J Urban Manage 6(1):19–29. https://doi.org/10.1016/j.jum.2017.03.001

    Article  Google Scholar 

  2. Soh MB (2012) Crime and urbanization: revisited malaysian case. Procedia Soc Behav Sci 42:291–299. https://doi.org/10.1016/j.sbspro.2012.04.193

    Article  Google Scholar 

  3. Badiora AI, Afon AO (2013) The spatial pattern of crime in Nigerian traditional city: the Ile-Ife experience. Int J Criminol Sociol Theory 6(3):15–28

    Google Scholar 

  4. Ajaegbu OO (2012) Rising youth unemployment and violent crime in Nigeria. Am J Soc Issues Humanit 2(5):315–321

    Google Scholar 

  5. Katsina AM (2013) Trend analysis of poverty and urban crime in Nigeria since 1999. Int J Arts Commer 1(2)

    Google Scholar 

  6. Kashyap V (2008) Ontologies and schemas. In: The Semantic Web, pp 79–135. https://doi.org/10.1007/978-3-540764526_5

  7. Trokanas N, Cecelja F (2016) Ontology evaluation for reuse in the domain of process systems engineering. Comput Chem Eng 85:177–187. https://doi.org/10.1016/j.compchemeng.2015.12.003

    Article  Google Scholar 

  8. Noy N, McGuiness D (2001) Ontology development 101: a guide to creating your first ontology. Stanford University, Stanford

    Google Scholar 

  9. Chergui W, Zidat S, Marir F (2018) An approach to the acquisition of tacit knowledge based on an ontological model. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2018.09.0129

  10. Alavi M, Leidner DE (2001) Knowledge management and knowledge management systems: conceptual foundations and research issues. Manag Inf Syst Q 25, 107–136. https://doi.org/10.2307/3250961; Anderson JR (1983) The architecture of cognition. Harvard University Press, Cambridge, MA

  11. Kotis K, Lanzenberger M (2008) Ontology matching: current status, dilemmas and future challenges. In: 2008 international conference on complex, intelligent and software intensive systems. https://doi.org/10.1109/cisis.2008.28

  12. Gutierrez-Basulto V, Ibanez-Garcia Y, Kontchakov R, Kostylev EV (2015) Queries with negation and inequalities over lightweight ontologies. SSRN Electron J. https://doi.org/10.2139/ssrn.3199213

    Article  Google Scholar 

  13. Shvaiko P, Euzenat J (2005) A survey of schema-based matching approaches. J Data Semant IV

    Google Scholar 

  14. Tartir S, Arpinar IB, Sheth AP (2010) Ontological evaluation and validation. Theory Appl Ontol Comput Appl 115–130. https://doi.org/10.1007/978-90-481-8847-5_5

  15. Berners-Lee T (2001) The semantic web (PDF). Scientific American

    Google Scholar 

  16. Usman U, Yakubu M, Bello AZ (2012) An investigation on the rate of crime in Sokoto state using principal component analysis

    Google Scholar 

  17. Spasic I, Ananiadou S, McNaught J, Kumar A (2005) Text mining and ontologies in biomedicine: Making sense of raw text. Brief Bioinform 6(3):239–251. https://doi.org/10.1093/bib/6.3.239

    Article  Google Scholar 

  18. Guha RV (2013) Light at the end of the tunnel. In: International semantic web conference 2013 keynote

    Google Scholar 

  19. Davis I (2014) vocab.org—a URI space for vocabularies. Retrieved 16 Feb 2019 from http://vocab.org/

  20. Yu L (2007) Swoogle. In: Introduction to the semantic web and semantic web services, pp 145–157. https://doi.org/10.1201/9781584889342.pt3

  21. Linked Open Vocabularies (2013) Linked open vocabularies (LOV). Retrieved 6 Dec 6 2018 from https://lov.linkeddata.es/dataset/lov/

  22. Musen MA, The Protégé Team (2013) Protégé ontology editor. Encycl Syst Biol:1763–1765. https://doi.org/10.1007/978-1-4419-9863-7_1104

  23. Slater L, Gkoutos GV, Schofield PN, Hoehndorf R (2016) Using AberOWL for fast and scalable reasoning over BioPortal ontologies. J Biomed Semant 7(1). https://doi.org/10.1186/s13326-016-0090-0

  24. Faria D, Jiménez-Ruiz E, Pesquita C, Santos E, Couto FM (2014) Towards annotating potential incoherences in bioportal mappings. Semant Web ISWC: 17–32. https://doi.org/10.1007/978-3-31911915-1_2

  25. W3C (2018) ConverterToRdf W3C Wiki. Retrieved 6 Dec 2018 from https://www.w3.org/wiki/ConverterToRdf#CSV_.28Comma-Separated_Values.29

  26. Zenuni X, Raufi B, Ismaili F, Ajdari J (2015) State of the art of semantic web for healthcare. Procedia Soc Behav Sci 195:1990–1998. https://doi.org/10.1016/j.sbspro.2015.06.213

    Article  Google Scholar 

  27. Protege—DataMaster (2014) DataMaster—Protege Wiki. Retrieved 6 Dec 2018 from https://protegewiki.stanford.edu/wiki/DataMaster

  28. Abdul Jalil M, Ling CP, Noor NMM, Mohd F (2017) Knowledge representation model for crime analysis. Procedia Comput Sci 116:484–491. https://doi.org/10.1016/j.procs.2017.10.067

    Article  Google Scholar 

  29. Dzemydiene D, Kazemikaitiene E (2005) Ontology-based decision support system for crime investigation processes. In: Vasilecas O, Wojtkowski W, Zupancic J, Caplinskas A, Wojtkowski WG, Wrycza S (eds) Springer, United States

    Google Scholar 

  30. Caldarola EG, Rinaldi AM (2016) An approach to ontology integration for ontology reuse. In: 2016 IEEE 17th international conference on information reuse and integration (IRI). https://doi.org/10.1109/iri.2016.58

  31. Tremblay G (2015) Cultural industries, creative economy and the information society. In: Power, media, culture. https://doi.org/10.1057/9781137540089.0011

  32. Ghorbel F, Ellouze N, Métais E, Hamdi F, Gargouri F, Herradi N (2016) MEMO GRAPH: an ontology visualization tool for everyone. Procedia Comput Sci 96:265–274. https://doi.org/10.1016/j.procs.2016.08.139

    Article  Google Scholar 

  33. Ding Y, Sun Y, Chen B, Borner K, Ding L, Wild D, Wu M, DiFranzo D, Fuenzalida AG, Li D, Milojevic S Toma I (2010) Semantic web portal: a platform for better browsing and visualizing semantic data. In: Active media technology, pp 448–460. https://doi.org/10.1007/978-3-642154706_46

  34. Habernal I, Konopík M (2013) SWSNL: semantic web search using natural language. Expert Syst Appl 40(9):3649–3664. https://doi.org/10.1016/j.eswa.2012.12.070

    Article  Google Scholar 

  35. Yang P, Tang K, Yao X (2018) Turning high-dimensional optimization into computationally expensive optimization 22

    Google Scholar 

  36. Abeysiriwardana PC, Kodituwakku SR (2012) Ontology-based information extraction for disease intelligence. Int J Res Comput Sci 2(6):7–19. https://doi.org/10.7815/ijorcs.26.2012.051

    Article  Google Scholar 

  37. Sowa JF (1999) Knowledge representation: logical, philosophical, and computational foundations. Brooks/Cole, Pacific Grove, CA

    Google Scholar 

  38. Smith B (2003) Ontology and information systems. SUNY at Buffalo, Buffalo, NY

    Google Scholar 

  39. Kishore R, Zang H, Ramesh R (2004) Computational ontologies and information systems foundations. In: Communications of the association for information systems 14. https://doi.org/10.17705/1cais.01408

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaneeka Vidanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidanage, K., Noor, N.M.M., Mohemad, R., Bakar, Z.A. (2020). Semantic Web-Based Knowledge Extraction: Upper Ontology Guided Crime Knowledge Discovery. In: Vasudevan, H., Michalas, A., Shekokar, N., Narvekar, M. (eds) Advanced Computing Technologies and Applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-3242-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3242-9_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3241-2

  • Online ISBN: 978-981-15-3242-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics