Skip to main content

Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate

  • Chapter
  • First Online:
Regulation of Cancer Immune Checkpoints

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1248))

Abstract

The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the “brake” of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad G et al (2014) Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis. Int J Biochem Cell Biol 57:123–134

    Article  CAS  PubMed  Google Scholar 

  • Alonso V, Friedman PA (2013) Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 27:558–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    Article  CAS  PubMed  Google Scholar 

  • Appleman LJ, Berezovskaya A, Grass I, Boussiotis VA (2000) CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 164:144–151

    Article  CAS  PubMed  Google Scholar 

  • Azuma M et al (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76–79

    Article  CAS  PubMed  Google Scholar 

  • Bannard O et al (2016) Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses. J Exp Med 213:993–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartee E, Mansouri M, Hovey Nerenberg BT, Gouveia K, Fruh K (2004) Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol 78:1109–1120

    Google Scholar 

  • Bauer J, Bakke O, Morth JP (2017) Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. N Biotechnol 38:7–15

    Article  CAS  PubMed  Google Scholar 

  • Bayer-Santos E et al (2016) The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe 20:584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettini M et al (2011) Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol 187:3493–3498

    Article  CAS  PubMed  Google Scholar 

  • Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282:36971–36979

    Article  CAS  PubMed  Google Scholar 

  • Bottino C et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgeois-Daigneault MC et al (2013) Tollip-induced down-regulation of MARCH1. Results Immunol 3:17–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschow SI et al (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10:1528–1542

    Article  CAS  PubMed  Google Scholar 

  • Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29–53

    Article  CAS  PubMed  Google Scholar 

  • Chamoto K, Al-Habsi M, Honjo T (2017) Role of PD-1 in Immunity and Diseases. Curr Top Microbiol Immunol 410:75–97

    CAS  PubMed  Google Scholar 

  • Chikuma S (2016) Basics of PD-1 in self-tolerance, infection, and cancer immunity. Int J Clin Oncol 21:448–455

    Article  CAS  PubMed  Google Scholar 

  • Cho KJ, Roche PA (2013) Regulation of MHC class II-peptide complex expression by ubiquitination. Front Immunol 4:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell GS et al (2006) Ubiquitin-dependent down-regulation of the neurokinin-1 receptor. J Biol Chem 281:27773–27783

    Article  CAS  PubMed  Google Scholar 

  • Delmastro MM et al (2012) Modulation of redox balance leaves murine diabetogenic TH1 T cells “LAG-3-ing” behind. Diabetes 61:1760–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dores MR, Trejo J (2012) Ubiquitination of G protein-coupled receptors: functional implications and drug discovery. Mol Pharmacol 82:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dores MR et al (2012) AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Mol Biol Cell 23:3612–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougall WC, Kurtulus S, Smyth MJ, Anderson AC (2017) TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev 276:112–120

    Article  CAS  PubMed  Google Scholar 

  • Drake JR (2018) The immunobiology of ubiquitin-dependent B cell receptor functions. Mol Immunol 101:146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du S et al (2018) Blockade of tumor-expressed PD-1 promotes lung cancer growth. Oncoimmunology 7:e1408747

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Ruiz E, Somoza C, Sanchez-Madrid F, Lanier LL (1995) CD28/CTLA-4 ligands: the gene encoding CD86 (B70/B7.2) maps to the same region as CD80 (B7/B7.1) gene in human chromosome 3q13-q23. Eur J Immunol 25:1453–1456

    Google Scholar 

  • Fujii R et al (2018) An IL-15 superagonist/IL-15Ralpha fusion complex protects and rescues NK cell-cytotoxic function from TGF-beta1-mediated immunosuppression. Cancer Immunol Immunother 67:675–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta K, Walseng E, Roche PA (2013) Internalizing MHC class II-peptide complexes are ubiquitinated in early endosomes and targeted for lysosomal degradation. Proc Natl Acad Sci USA 110:20188–20193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagliani N et al (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19:739–746

    Article  CAS  PubMed  Google Scholar 

  • Ganoth A, Tsfadia Y, Wiener R (2013) Ubiquitin: molecular modeling and simulations. J Mol Graph Model 46:29–40

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Zheng Q, Xin N, Wang W, Zhao C (2017) CD155, an onco-immunologic molecule in human tumors. Cancer Sci 108:1934–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson HM et al (2013) Impaired proteasome function activates GATA3 in T cells and upregulates CTLA-4: relevance for Sezary syndrome. J Invest Dermatol 133:249–257

    Article  CAS  PubMed  Google Scholar 

  • Groen EJN, Gillingwater TH (2015) UBA1: at the crossroads of ubiquitin homeostasis and neurodegeneration. Trends Mol Med 21:622–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso JF et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117:3383–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasdemir B, Murphy JE, Cottrell GS, Bunnett NW (2009) Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2. J Biol Chem 284:28453–28466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M et al (2018) CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 69:301–318

    Article  CAS  PubMed  Google Scholar 

  • Hemon P et al (2011) MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol 186:5173–5183

    Article  CAS  PubMed  Google Scholar 

  • Hislop JN, von Zastrow M (2011) Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 12:137–148

    Article  CAS  PubMed  Google Scholar 

  • Horita H, Law A, Hong S, Middleton K (2017) Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton. Neoplasia 19:346–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hromadnikova I, Pirkova P, Sedlackova L (2013) Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors. Mediat Inflamm 2013:405295

    Google Scholar 

  • Huang X et al (2019) USP22 deubiquitinates CD274 to suppress anticancer immunity. Cancer Immunol Res 7:1580–1590

    Article  PubMed  Google Scholar 

  • Hurley JH, Stenmark H (2011) Molecular mechanisms of ubiquitin-dependent membrane traffic. Annu Rev Biophys 40:119–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibach J et al (2015) Single particle tracking reveals that EGFR signaling activity is amplified in clathrin-coated pits. PLoS ONE 10:e0143162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaksson A, Musti AM, Bohmann D (1996) Ubiquitin in signal transduction and cell transformation. Biochim Biophys Acta 1288:F21–F29

    PubMed  Google Scholar 

  • Ishido S, Kajikawa M (2019) MHC class II fine tuning by ubiquitination: lesson from MARCHs. Immunogenetics 71:197–201

    Article  PubMed  Google Scholar 

  • Ishikawa R, Kajikawa M, Ishido S (2014) Loss of MHC II ubiquitination inhibits the activation and differentiation of CD4 T cells. Int Immunol 26:283–289

    Article  CAS  PubMed  Google Scholar 

  • Jin B, Scott JL, Vadas MA, Burns GF (1989) TGF beta down-regulates TLiSA1 expression and inhibits the differentiation of precursor lymphocytes into CTL and LAK cells. Immunology 66:570–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jingjing W et al (2018) Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma. Cancer Med 7:4004–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Kleffel S et al (2015) Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162:1242–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozer N et al (2014) Recruitment of the adaptor protein Grb2 to EGFR tetramers. Biochemistry 53:2594–2604

    Article  CAS  PubMed  Google Scholar 

  • Lapaque N et al (2009) Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proc Natl Acad Sci USA 106:14052–14057

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KM et al (1998) Molecular basis of T cell inactivation by CTLA-4. Science 282:2263–2266

    Article  CAS  PubMed  Google Scholar 

  • Legrand N et al (2011) Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 108:13224–13229

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Workman CJ, Martin SM, Vignali DA (2004) Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223). J Immunol 173:6806–6812

    Article  CAS  PubMed  Google Scholar 

  • Li N et al (2007) Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J 26:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CW et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2017) Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology 66:1920–1933

    Article  CAS  PubMed  Google Scholar 

  • Lim SO et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30:925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2015) Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta 1855:50–60

    CAS  PubMed  Google Scholar 

  • Liu H et al (2016) Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. J Exp Med 213:1695–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X et al (2017) Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Nat Commun 8:14286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JK, Platt MY, Eastham-Anderson J, Shin JS, Mellman I (2012) MHC class II distribution in dendritic cells and B cells is determined by ubiquitin chain length. Proc Natl Acad Sci USA 109:8820–8827

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda TK, Sugiura D, Okazaki IM, Maruhashi T, Okazaki T (2019) Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. J Biol Chem 294:6017–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manes TD, Pober JS (2011) Identification of endothelial cell junctional proteins and lymphocyte receptors involved in transendothelial migration of human effector memory CD4+ T cells. J Immunol 186:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Marchese A, Benovic JL (2001) Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276:45509–45512

    Article  CAS  PubMed  Google Scholar 

  • Marchese A, Trejo J (2013) Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cell Signal 25:707–716

    Article  CAS  PubMed  Google Scholar 

  • Martin NP, Lefkowitz RJ, Shenoy SK (2003) Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. J Biol Chem 278:45954–45959

    Article  CAS  PubMed  Google Scholar 

  • Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15:243–254

    Article  CAS  PubMed  Google Scholar 

  • Matsuki Y et al (2007) Novel regulation of MHC class II function in B cells. EMBO J 26:846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X et al (2018) FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 564:130–135

    Article  CAS  PubMed  Google Scholar 

  • Miranda M, Sorkin A (2007) Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms. Mol Interv 7:157–167

    Article  CAS  PubMed  Google Scholar 

  • Moffat JM, Mintern JD, Villadangos JA (2013) Control of MHC II antigen presentation by ubiquitination. Curr Opin Immunol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Molfetta R et al (2019) The Ubiquitin-proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. Eur J Immunol 49:873–883

    Article  CAS  PubMed  Google Scholar 

  • Nathan JA, Lehner PJ (2009) The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. Exp Cell Res 315:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Oh J et al (2013) MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. J Exp Med 210:1069–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmura-Hoshino M et al (2009) Cutting edge: requirement of MARCH-I-mediated MHC II ubiquitination for the maintenance of conventional dendritic cells. J Immunol 183:6893–6897

    Article  CAS  PubMed  Google Scholar 

  • Patil NK, Guo Y, Luan L, Sherwood ER (2017) Targeting immune cell checkpoints during sepsis. Int J Mol Sci 18

    Google Scholar 

  • Peach RJ et al (1994) Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med 180:2049–2058

    Article  CAS  PubMed  Google Scholar 

  • Pende D et al (2006) Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107:2030–2036

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    Article  CAS  PubMed  Google Scholar 

  • Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131:58–67

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Correa B et al (2019) DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel) 11

    Google Scholar 

  • Schneider H, Rudd CE (2014) Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front Immunol 5:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider H et al (1999) Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol 163:1868–1879

    CAS  PubMed  Google Scholar 

  • Selby MJ et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1:32–42

    Article  CAS  PubMed  Google Scholar 

  • Seliger, B (2019) Basis of PD1/PD-L1 therapies. J Clin Med 8

    Google Scholar 

  • Serman TM, Gack MU (2019) FBXO38 drives PD-1 to destruction. Trends Immunol 40:81–83

    Article  CAS  PubMed  Google Scholar 

  • Seth S et al (2009) Heterogeneous expression of the adhesion receptor CD226 on murine NK and T cells and its function in NK-mediated killing of immature dendritic cells. J Leukoc Biol 86:91–101

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK (2007) Seven-transmembrane receptors and ubiquitination. Circ Res 100:1142–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK et al (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. J Biol Chem 283:22166–22176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya K et al (2003) CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 198:1829–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JS et al (2006) Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444:115–118

    Article  CAS  PubMed  Google Scholar 

  • Sigismund S et al (2013) Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J 32:2140–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit JJ, Sixma TK (2014) RBR E3-ligases at work. EMBO Rep 15:142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon BL, Garrido-Laguna I (2018) TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 67:1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Tsukerman P, Mandelboim O (2017) The paired receptors TIGIT and DNAM-1 as targets for therapeutic antibodies. Hum Antibodies 25:111–119

    Article  CAS  PubMed  Google Scholar 

  • Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS (2016) E2 enzymes: more than just middle men. Cell Res 26:423–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer DK, Piper RC (2011) A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. J Cell Biol 192:229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahara-Hanaoka S et al (2005) Identification and characterization of murine DNAM-1 (CD226) and its poliovirus receptor family ligands. Biochem Biophys Res Commun 329:996–1000

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Du X, Liu M, Zheng P, Liu Y (2018) Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade? Cell Biosci 8:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanowitz M, Von Zastrow M (2002) Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes. J Biol Chem 277:50219–50222

    Article  CAS  PubMed  Google Scholar 

  • Triebel F et al (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171:1393–1405

    Article  CAS  PubMed  Google Scholar 

  • Tze LE et al (2011) CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med 208:149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungermannova D et al (2012) Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (e1). PLoS ONE 7:e29208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Rohrscheidt J et al (2016) Thymic CD4 T cell selection requires attenuation of March8-mediated MHCII turnover in cortical epithelial cells through CD83. J Exp Med 213:1685–1694

    Article  CAS  Google Scholar 

  • Walseng E et al (2010) Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells. Proc Natl Acad Sci USA 107:20465–20470

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2018) Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol 9:536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei B, da Rocha Dias S, Wang H, Rudd CE (2007) CTL-associated antigen-4 ligation induces rapid T cell polarization that depends on phosphatidylinositol 3-kinase, Vav-1, Cdc42, and myosin light chain kinase. J Immunol 179:400–408

    Google Scholar 

  • Weiskopf K (2017) Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur J Cancer 76:100–109

    Article  CAS  PubMed  Google Scholar 

  • Weiskopf K et al (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126:2610–2620

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiener R et al (2013) E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol 20:1033–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson KR et al (2018) MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE 13:e0200540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman CJ, Dugger KJ, Vignali DA (2002a) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA (2002b) Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 32:2255–2263

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Shenoy SK (2011) Beta2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains. J Biol Chem 286:12785–12795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Jin B (2010) A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions. Cell Mol Immunol 7:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang S, Li J, Li B (2019) CD47/SIRPalpha blocking enhances CD19/CD3-bispecific T cell engager antibody-mediated lysis of B cell malignancies. Biochem Biophys Res Commun 509:739–745

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Wang H, Li C, Fang JY, Xu J (2018) Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front Immunol 9:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H et al (2019) Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 3:306–317

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2005) Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun 6:145–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cheng G, Han WN, Cao YX, Jin BQ (2006) Expression and function of CD226 on NK cells activated by Superantigens. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 22:4–6

    PubMed  Google Scholar 

  • Zhang X et al (2019) Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J Immunother Cancer 7:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao B et al (2012) Orthogonal ubiquitin transfer through engineered E1-E2 cascades for protein ubiquitination. Chem Biol 19:1265–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitti B et al (2017) Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Sci Rep 7:10445

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, H., Xu, J. (2020). Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. In: Xu, J. (eds) Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, vol 1248. Springer, Singapore. https://doi.org/10.1007/978-981-15-3266-5_13

Download citation

Publish with us

Policies and ethics