Skip to main content

Human Gait Analysis Based on Decision Tree, Random Forest and KNN Algorithms

  • Conference paper
  • First Online:
Applied Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1155))

Abstract

Human Gait refers to motion accomplished through the movement of hand limbs. Gait analysis is a precise investigation of the human walking pattern using sensors attached to the body for recording body movements during activities like walking on a flat surface, treadmill and running. This paper addresses the analysis of human gait based on performance using various classification techniques involving Decision Tree, Random Forest and KNN algorithms. The paper highlights the comparison of these classification models based on various parameters using the RapidMiner Studio tool. The comparison is based on performance metrics and Receiver Operating Characteristic (ROC). The results show that the Random Forest algorithm performs better in classifying normal and abnormal gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakchy, S.C., Mondal, M.N.I., Ali, M.M., Hoque Sathi, A., Ray, K.C., Jannatul Ferdous, M.: Limbs and muscle movement detection using gait analysis. In: 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, pp. 1–4 (2018). https://doi.org/10.1109/ic4me2.2018.8465598

  2. Esquenazi, A., Talaty, M.: Gait analysis, technology and clinical applications. Phys. Med. Rehabil. 99–116 (2011)

    Google Scholar 

  3. Singh, J.P., Jain, S., Arora, S., Singh, U.P.: Vision-based gait recognition: a survey. IEEE Access 6, 70497–70527 (2018). https://doi.org/10.1109/ACCESS.2018.2879896

    Article  Google Scholar 

  4. Tian, Y., Wei, L., Lu, S., Huang, T.: Free-view gait recognition. PLoS ONE 14(4), e0214389 (2019). https://doi.org/10.1371/journal.pone.0214389

    Article  Google Scholar 

  5. Li, X., Maybank, S.J., Yan, S., Tao, D., Xu, D.: ‘Gait components and their application to gender recognition. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38(2), 145–155 (2008). https://doi.org/10.1109/tsmcc.2007.913886

  6. Lu, J., Wang, G., Moulin, P.: ‘Human identity and gender recognition from gait sequences with arbitrary walking directions’. IEEE Trans. Inf. Forensics Secur. 9(1), 51–61 (2014). https://doi.org/10.1109/TIFS.2013.2291969

    Article  Google Scholar 

  7. Sudha, L.R., Bhavani, R.: An efficient spatio-temporal gait representation for gender classification. Appl. Artif. Intell. 27(1), 62–75 (2013). https://doi.org/10.1080/08839514.2013.747373

    Article  Google Scholar 

  8. Weiss, R.J., Wretenberg, P., Stark, A., Palmblad, K., Larsson, P., Grondal, L., Brostrom, E.: Gait pattern in rheumatoid arthritis. Gait Posture 28(2), 229–234 (2008)

    Article  Google Scholar 

  9. Saad, A., Zaarour, I., Guerin, F., Bejjani, P., Ayache, M., Lefebvre, D.: Detection of freezing of gait for Parkinson’s disease patients with multisensor device and Gaussian neural networks. Int. J. Mach. Learn. 8(3), 941–954 (2017)

    Article  Google Scholar 

  10. Ťupa, O., et al.: Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect. Biomed. Eng. Online 14(1), 97 (2015)

    Article  Google Scholar 

  11. Bidabadi, S.S., Murray, I., Lee, G.Y.F., Morris, S., Tan, T.: Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Gait and Posture 71, 234–240 (2019). ISSN 0966-6362, https://doi.org/10.1016/j.gaitpost.2019.05.010

  12. Prajwala, T.R.: A comparative study on decision tree and random forest using R tool. Int. J. Adv. Res. Comput. Commun. Eng. 4(1), (2015)

    Google Scholar 

  13. Tahsildar, S.: Gini Index For Decision Trees. Quantinsti (2019)

    Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  15. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  16. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  17. Brownlee, J.: How to use ROC curves and precision-recall curves for classification in Python. Machine Learning Mastery (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayushi Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, A., Jadhav, A., Jadhav, S., Thengade, A. (2020). Human Gait Analysis Based on Decision Tree, Random Forest and KNN Algorithms. In: Iyer, B., Rajurkar, A., Gudivada, V. (eds) Applied Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-15-4029-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4029-5_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4028-8

  • Online ISBN: 978-981-15-4029-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics