Skip to main content

Microbial Cell Factories in Nanotechnology

  • Chapter
  • First Online:
Microbial Diversity, Interventions and Scope

Abstract

The nanotechnology is the fast-growing field that offers a huge application in various disciplines of science and technology. The nanoscale materials can be synthesized by physical, chemical, physicochemical, or biological methods. All the synthesis processes except biological process have some environmental and operational constraints. The biological synthesis process or green synthesis of these nanomaterials is an eco-friendly and cost-effective approach which utilizes bacteria, fungi, and plant sources. Biological systems are a good producer of nanoparticles such as magnetotactic bacteria that are capable of producing magnetite (Fe3O4), while diatoms are capable of producing siliceous materials. Magnetotactic bacteria produce magnetosomes which are greatly used for the immobilization of enzymes, antibodies, DNA, and RNA. Metal and microbial interactions are greatly involved in the processes like biomineralization, bioremediation, bioleaching, and microbial corrosion. Pseudomonas stutzeri AG259 is a metal-accumulating bacterium that has the capability to produce silver nanoparticles; fungi like Candida glabrata and Schizosaccharomyces pombe have the potential to produce cadmium sulfide particles. Schizosaccharomyces pombe has been well studied for its potential to detoxify cadmium from the environment by active intracellular uptake of cadmium and its bioconversion to small iso-peptides. In a summarized way, we can say microbes are the living factories for the generation of advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Deman AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar S, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic Actinomycete, Thermomonospora sp. Langmuir 19:3550

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Shrinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant Actinomycete, Rhodococcus species. Nanotechnology 14:824

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160

    Article  CAS  Google Scholar 

  • Choi Y, Parke TJ, Leed DC, Leea SY (2018) Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc Natl Acad Sci 115:5944

    Article  CAS  Google Scholar 

  • Curtis AS, Dalby M, Gadegaard N (2006) Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine 1:67

    Article  CAS  Google Scholar 

  • Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596

    Article  CAS  Google Scholar 

  • Fu M, Li Q, Sun D, Lu Y, He N, Deng X, Wang H, Huang J (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 14:114

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984

    Article  CAS  Google Scholar 

  • Hosea M, Greene B, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123:161

    Article  CAS  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces 121:474

    Article  CAS  Google Scholar 

  • Husseiny MI, Ei-Aziz MA, Bad RY, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003

    Article  CAS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 1:18

    Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3nanoparticles. Biochem Eng J 43:303

    Article  CAS  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145

    Article  CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elango G, Zahir GA, Kamaraj C, Bagavan A (2015) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65:2745

    Article  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611

    Article  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4 − ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648

    Article  CAS  Google Scholar 

  • Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439

    Article  CAS  Google Scholar 

  • Kumar SA, Ayoobul AA, Absar A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani RR, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajay PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nano-clusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293

    Article  CAS  Google Scholar 

  • Niknejad F, Nabili M, Ghazvini D, Moazeni M (2015) Green synthesis of silver nanoparticles: advantages of the yeast Saccharomyces cerevisiae model. Curr Med Mycol 1:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ottoni CA, Simões MF, Fernandes S, Santos JG, Silva ES, De Souza RFB, Maiorano AE (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31

    Article  Google Scholar 

  • Priyadarshinia S, Gopinatha V, Priyadharsshinia NM, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus, and its biomedical application. Colloids Surf B: Biointerfaces 102:232

    Article  Google Scholar 

  • Rueda F, Céspedes MV, Chardi AS, Franzoso JS, Pesarrodona M, Miralles NF, Vázquez E, Rinas U, Unzueta U, Mamat U, Mangues R, Fruitos EG, Villaverde A (2016) Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli. Microb Cell Factories 15:59

    Article  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577

    Article  CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517

    Article  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B: Biointerface s57:97

    Article  Google Scholar 

  • Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Factories 3:1

    Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413

    Article  CAS  Google Scholar 

  • Villaverde A (2010) Nanotechnology, bionanotechnology, and microbial cell factories. Microb Cell Factories 9:53

    Article  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235

    Article  CAS  Google Scholar 

  • Vu XH, Tra Duong TT, Pham TTH, Trinh DK, Nguyen XH, Dang VS (2018) Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv Nat Sci Nanosci Nanotechnol 09:025019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Sharma, R., Chaudhary, A. (2020). Microbial Cell Factories in Nanotechnology. In: Sharma, S., Sharma, N., Sharma, M. (eds) Microbial Diversity, Interventions and Scope. Springer, Singapore. https://doi.org/10.1007/978-981-15-4099-8_6

Download citation

Publish with us

Policies and ethics