Skip to main content

Source/Drain (S/D) Spacer-Based Reconfigurable Devices-Advantages in High-Temperature Applications and Digital Logic

  • Conference paper
  • First Online:
Modelling, Simulation and Intelligent Computing (MoSICom 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 659))

  • 767 Accesses

Abstract

This paper explores source/drain (S/D) spacer technology-based reconfigurable field-effect transistors (RFETs) and a detailed physical insight toward the advantages of using spacer oxide in RFETs for applications involving rapid temperature fluctuations and reduction of circuit delay in contrast to conventional ambipolar FETs and other devices based on band-to-band tunneling (BTBT) such as TFETs. Temperature-based DC, analog and RF performance of gate-all-around (GAA), heterogeneous gate dielectric GAA, SiGe, and full silicon TFETs are compared. Moreover, it is also shown that the propagation delay in logic circuits is reduced for the proposed DG-RFET resulting in more robust and improved circuit performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heinzig A, Slesazeck S, Kreupl F, Mikolajick T, Weber WM (2011) Reconfigurable silicon nanowire transistors. Nano Lett 12(1):119–124

    Article  Google Scholar 

  2. Heinzig A, Mikolajick T, Trommer J, Grimm D, Weber WM (2013) Dually active silicon nanowire transistors and circuits with equal electron and hole transport. Nano Lett 13(9):4176–4181

    Article  Google Scholar 

  3. Martino MDV, Neves FS, Agopian PGD, Martino JA, Vandooren A, Rooyackers R, Simoen E, Thean A, Claeys C (2015) Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism. Solid-State Electron 112:51–55

    Article  Google Scholar 

  4. Madan J, Chaujar R, Temperature associated reliability issues of heterogeneous gate dielectric—gate all around—tunnel FET. IEEE Trans Nanotechnol 99:1. https://doi.org/10.1109/tnano.2017.2650209

  5. Bhattacharjee A, Saikiran M, Dutta A, Anand B, Dasgupta S (2015) Spacer engineering-based high-performance reconfigurable FET with low off current characteristics. IEEE Electron Device Lett 36(5):520–522

    Google Scholar 

  6. Bhattacharjee A, Dasgupta S (2016) Optimization of design parameters in dual-κ spacer based nanoscale reconfigurable FET for improved performance. IEEE Trans Electron Devices 63(3):1375–1382

    Article  Google Scholar 

  7. Bhattacharjee A, Dasgupta S (2017) Impact of gate/spacer-channel underlap, gate oxide EOT, and scaling on the device characteristics of a DG-RFET. IEEE Trans Electron Devices 64(8):3063–3070

    Article  Google Scholar 

  8. Bhattacharjee A, Saikiran M, Dasgupta S (2017) A first insight to the thermal dependence of the DC, analog and RF performance of a S/D spacer engineered DG-ambipolar FET. IEEE Trans Electron Devices 64(10):4327–4334

    Article  Google Scholar 

  9. Sentaurus TCAD (ver. 2012.06) Manuals. Synopsys Inc., Mountain View, CA

    Google Scholar 

  10. Trommer J, Heinzig A, Baldauf T, Slesazeck S, Mikolajick T, Weber WM (2015) Functionality-enhanced logic gate design enabled by symmetrical reconfigurable silicon nanowire transistors. IEEE Trans Nanotechnol 14(4):689–698

    Google Scholar 

  11. Migita S, Fukuda K, Morita Y, Ota H (2012) Experimental demonstration of temperature stability of Si-tunnel FET over Si-MOSFET. In: 2012 IEEE silicon nanoelectronics workshop (SNW), Honolulu, HI, pp 1–2

    Google Scholar 

  12. Boucart K, Ionesco AM (2007) Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733

    Article  Google Scholar 

  13. Marchiori C, Frank MM, Bruley J, Narayanan V, Fompeyrine J (2011) Epitaxial SrO interfacial layers for HfO2-Si gate stack scaling. Appl Phys Lett 98(5):052908

    Article  Google Scholar 

  14. Marchi MD, Zhang J, Frache S, Sacchetto D, Gaillardon P-E, Leblebici Y, De Micheli G (2014) Configurable logic gates using polarity-controlled silicon nanowire gate-all-around FETs. IEEE Electron Device Lett 35(8):880–882

    Google Scholar 

  15. Bhattacharjee A, Dasgupta S (2018) A compact physics-based surface potential and drain current model for an S/D spacer based DG-RFET. IEEE Trans Electron Devices 65(2):448–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeb Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharjee, A., Dasgupta, S. (2020). Source/Drain (S/D) Spacer-Based Reconfigurable Devices-Advantages in High-Temperature Applications and Digital Logic. In: Goel, N., Hasan, S., Kalaichelvi, V. (eds) Modelling, Simulation and Intelligent Computing. MoSICom 2020. Lecture Notes in Electrical Engineering, vol 659. Springer, Singapore. https://doi.org/10.1007/978-981-15-4775-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4775-1_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4774-4

  • Online ISBN: 978-981-15-4775-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics