Skip to main content

Defensive Role of Plant Phenolics Against Pathogenic Microbes for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Phenolics in Sustainable Agriculture

Abstract

Plant phenolics are secondary metabolites of plants which have different functions in plantlike giving color and odor to the fruit and flower, defense against biotic and abiotic stresses. Studies in the field of utilization of plant phenolics are scanty. The plant microbe pathogens include bacteria, fungi, and viruses caused a lot of economical loss in agricultural field. The reduced output, rising prices and side effects of chemical pesticides are pushing the farmers to find an alternative. Plant phenols which act as an innate defensive mechanism in many plants against plant micro pathogens can be standardized and used as pesticides. Biological pesticides made of plant phenolics can effectively replace the chemical pesticides. This review says about the general defensive properties of plant phenolics, studies on the defensive role of plant phenolics in both intact plants, and effect of extracted phenolics in crop plants. The review also suggests more studies in the field of defensive utility of plant phenolics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AJ, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi drug resistance human pathogens. J Ethnopharmacol 74:113–123

    CAS  PubMed  Google Scholar 

  • Angell HR, Walker JC, Link KP (1930) The relation of protocatechuic acid to disease resistance in the onion. Phytopathology 20:431–438

    CAS  Google Scholar 

  • Arcas MC, Botia JM, Ortuño AM, Del Rio JA (2000) UV irradiation alters the levels of flavonoids involved in the defense mechanism of Citrus aurantium fruits against Penicillium digitatum. Eur J Plant Pathol 106(7):617–622

    CAS  Google Scholar 

  • Ashour M, Wink M, Gershenzon JG (2010) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. In: Wink M (ed) , vol 40, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Atrooz OM (2009) The antioxidant activity and polyphenolic contents of different plant seeds extracts. Pak J Biol Sci 12:1063–1068

    PubMed  Google Scholar 

  • Barbacanne MA, Souchard JP, Darblade B, Iliou JP, Nepveu F, Pipy B, Bayard F, Arnal JF (2000) Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques. Free Radic Biol Med 29:388–396

    CAS  PubMed  Google Scholar 

  • Bors W, Michel C (2002) Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci 957:57–69

    CAS  PubMed  Google Scholar 

  • Bortoletto P, Lyman K, Camacho A, Fricchione M, Khanolkar A, Katz BZ (2015) Chronic granulomatous disease. Pediatr Infect Dis J 34:1110–1114

    PubMed  PubMed Central  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    CAS  PubMed  Google Scholar 

  • Brune M, Rossander L, Hallberg L (1989) Iron absorption and phenolic compounds: importance of different phenolic structures. Eur J Clin Nutr 43(8):547–557

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060

    CAS  PubMed  Google Scholar 

  • Carmen MM, Florin A (2009) Total antioxidant capacity of some fruit juices: electrochemical and spectrophotometrically approaches. Molecules 14:480–493

    Google Scholar 

  • Castellanos I, Espinosa-García FJ (1997) Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granarius (Coleoptera: Curculionidae) and seed secondary metabolites. Biochem Syst Ecol 25(7):591–602

    CAS  Google Scholar 

  • Chandrasekara A, Shahidi F (2010) Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J Agric Food Chem 58:6706–6714

    CAS  PubMed  Google Scholar 

  • Cho M, Lee S (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16(12):29120–29133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung KT, Wong TY, Wei CI, Huang YW, Lin NY (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464

    CAS  PubMed  Google Scholar 

  • Cody V, Middleton E Jr, Harbome JB (1986) Plant flavonoids in biology and medicine, vol 1. R Liss New York, Alan

    Google Scholar 

  • Daayf F, Ongena M, Boulanger R, Hadrami IE, Bélanger RR (2000) Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. J Chem Ecol 26(7):1579–1593

    CAS  Google Scholar 

  • Davis RH (1991) Glucosinolates. In: DMello JP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Cambridge, Royal Society of Chemistry, pp 202–225

    Google Scholar 

  • De Groot H, Rauen U (1998) Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol 12:249–255

    PubMed  Google Scholar 

  • Del Río JA, Báidez AG, Botía JM, Ortuño A (2003) Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food Chem 83(1):75–78

    Google Scholar 

  • Dietrich R, Ploss K, Heil M (2005) Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Environ 28:211–222

    CAS  Google Scholar 

  • Faujdar S, Sati B, Sharma S, Pathak AK, Paliwal SK (2019) Phytochemical evaluation and anti-hemorrhoidal activity of bark of Acacia ferruginea DC. J Tradit Complement Med 9(2:85–89

    Google Scholar 

  • Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457

    CAS  PubMed  Google Scholar 

  • Gerritsen ME, Carley WW, Ranges GE, Shen C-P, Phan SA, Ligon GF, Perry CA (1995) Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol 147:278–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopi C, Vatsala TM (2006) In vitro studies on effects of plant growth regulators on callus and cell suspension culture biomass yield from Gymnema sylvestre R Br. Afr J Biotechnol 5(12):1215–1219

    CAS  Google Scholar 

  • Goyal BR, Goyal RK, Mehta AA (2007) Phyto-pharmacology of Achyranthes aspera: a review. Pharmacol Rev 1:143–153

    CAS  Google Scholar 

  • Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavonones, flavanones and human health: Epidemiological evidence. J Med Food 8:281–290

    CAS  PubMed  Google Scholar 

  • Halliwell B (1999) Establishing the significance and optimal intake of dietary antioxidants: the biomarker concept. Nutr Rev 57:104–113

    CAS  PubMed  Google Scholar 

  • Handa SS, Khanuja SPS, Longo G, Rakesh DD (2008) Extraction technologies for medicinal and aromatic plants. International Centre for Science and High Technology, Trieste, pp 21–25

    Google Scholar 

  • Harborne JB (1989) In: Dey PM, Harborne JB (eds) Plethora of polyphenols plant phenolics. Volume 1 in methods in plant biochemistry. Academic, London, p 552

    Google Scholar 

  • Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379

    CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–243

    PubMed  Google Scholar 

  • Holmcs FO (1938) Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology 28:553–561

    Google Scholar 

  • Hooft van Huijsduijnen RAM, Alblas SW, de Rijk RH, Bol JF (1986) Induction by salicylic acid of pathogenesis-related proteins and resistance to alfalfa mosaic virus infection in various plant species. J Gen Virol 67(2):135–143

    Google Scholar 

  • Hurrell RF, Hurrell RF, Reddy MB, Burri J, Cook JD (2002) Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods. Br J Nutr 88:117–123

    CAS  PubMed  Google Scholar 

  • Igbinosa OO, Igbinosa EO, Aiyegoro OA (2009) Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr J Pharm Pharmacol 3(2):058–062

    Google Scholar 

  • Inderjit, Gross E (2002) Plant phenolics: potential role in aquatic and terrestrial ecosystems. In: Martens S, Treutter D, Forkmann G (eds) Polyphenols 2000. Technische Universität Müchen, Technische Universität München, Freising, pp 206–234

    Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50(10):2731–2741

    CAS  PubMed  Google Scholar 

  • Johari MA, Khong HY (2019) Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Adv Pharmacol Sci 2019:Article ID 7428593, 4 pages

    Google Scholar 

  • John LL, Steffens C (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Google Scholar 

  • Johnson G, Schaal LA (1952) Relationship of chlorogenic acid to scab resistance in potatoes. Science 115:627–629

    CAS  PubMed  Google Scholar 

  • Kalt W (2001) Health functional phytochemicals of fruit. Hortic Rev 27:269–315

    CAS  Google Scholar 

  • Karadenz F, Burdurlu HS, Koca N (2005) Antioxidant activity of selected fruits and vegetables grown in Turkey. Turk J Agric For 29:297–303

    Google Scholar 

  • Kelly K (2009) History of medicine. Facts on file, New York, pp 29–50

    Google Scholar 

  • Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31(11):3807–3809

    CAS  Google Scholar 

  • Kondratyuk TP, Pezzuto JM (2004) Natural product polyphenols of relevance to human health. Pharm Biol 42:46–63

    CAS  Google Scholar 

  • Koricheva J, Nykanen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163(4):E64–E75

    PubMed  Google Scholar 

  • Lapornik B, Prosek M, Wondra AG (2005) Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng 71:214–222

    Google Scholar 

  • Lattanzio V, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 661:23–67

    Google Scholar 

  • Lee SF, LeTourneau DJ (1958) Chlorogenic acid content and verticillium wilt resistance of potatoes. Phytopathology 48:268–274

    CAS  Google Scholar 

  • Links KP, Dickson AD, Walker JC (1929) Further observations on the occurrence of protocatechuic acid in pigmented onion scales and its relation to disease resistance in onions. J Biol Chem 84:719–725

    Google Scholar 

  • Longstaff MA, McNabb JM (1991) The inhibitory effects of hull polysaccharides and tannins of field beans (Vicia faba L.) on the digestion of amino acids, starch and lipid, and on digestive activities in young chicks. Br J Nutr 65:199–216

    CAS  PubMed  Google Scholar 

  • Maddox CE, Laur LM, Tian L (2010) Antibacterial activity of phenolic compounds against the Phytopathogen Xylella fastidiosa. Curr Microbiol 60(1):53–58

    CAS  PubMed  Google Scholar 

  • Mahlo SM, McGaw LJ, Eloff JN (2013) Antifungal activity and cytotoxicity of isolated compounds from leaves of Breonadia salicina. J Ethnopharmacol 148(3):909–913

    CAS  PubMed  Google Scholar 

  • Mallikhrjuna PB, Rajanna LN, Seetharam YN, Sharanabassapa GK (2007) Phytochemical studies of Strychnos potatorum L F- A medicinal plant. J Chem 4(4):510–518

    Google Scholar 

  • Mikulič-Petkovšek M, Štampar F, Veberič R (2009) Accumulation of phenolic compounds in apple in response to infection by the scab pathogen, Venturia inaequalis. Physiol Mol Plant Pathol 74:60–67

    Google Scholar 

  • Mikulic-Petkovsek M, Slatnar A, Veberic R, Stampar F, Solar A (2011) Phenolic response in green walnut husk after the infection with bacteria Xanthomonas arboricola pv. juglandis. Physiol Mol Plant Pathol 76(3–4):159–165

    CAS  Google Scholar 

  • Mukherjee PK (2003) GMP for Indian Systems of Medicine. Business Horizons, New Delhi, pp 99–112

    Google Scholar 

  • Nayef N, Montasser MS, Afzal M (2018) A comparative study of the influence of cucumber mosaic virus on free radical scavengers of tomato and squash plants. J Plant Chem Ecophysiol 3(1):1020

    Google Scholar 

  • Nazaré AC, Polaquini CR, Cavalca LB, Anselmo DB, Saiki MFC, Monteiro DA, Zielinska A, Rahal P, Gomes E, Scheffers DJ, Ferreira H, Regasini LO (2018) Design of antimicrobial agents: alkyl dihydroxybezoatesa gainst Xanthomonas citri subsp citri. Int J Mol Sci 19(10)

    Google Scholar 

  • Nigdikar SV, Williams NR, Griffin BA, Howard AN (1998) Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr 68:258

    CAS  PubMed  Google Scholar 

  • Painter RH (1941) The Economic Value and Biologic Significance of Insect Resistance in Plants. J Econ Entomol 34(3):358–367

    Google Scholar 

  • Pane C, Fratianni F, Parisi M, Nazzaro F, Zaccardelli M (2016) Control of alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Prot 84:81–87

    CAS  Google Scholar 

  • Parekh J, Chanda S (2006) Invert antimicrobial activity of extracts of Leunaea procumbens Roxb. (Labiateae), Vitis vinifera (Vitaceae) and Cyperus rotundus L. (Cyperaceae). Afr J Biomed Res 9:89–93

    Google Scholar 

  • Paul ND, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5(5):220–225

    CAS  PubMed  Google Scholar 

  • Pennazio S, Roggero P, Gentile IA (1985) Effects of salicylate on virus infected tobacco plants. J Phytopathol 1(14):203–213

    Google Scholar 

  • Pennazio S, Colariccio D, Roggero P, Lenzi R (1987) Effect of salicylate stress on the hypersensitive reaction of asparagus bean to tobacco necrosis virus. Physiol Mol Plant Palhol 30:347–357

    CAS  Google Scholar 

  • Prakash P, Gupta N (2005) Therapeutic uses of Ocimum sanctum (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 49(2):125–131

    CAS  PubMed  Google Scholar 

  • Prasad D, Singh A, Singh KP, Bist S, Tewari A, Singh UP (2008) The role of phenolic compounds in disease resistance in geranium. Arch Phytopathol Plant Protect 43(7):615–623

    Google Scholar 

  • Price KR, Johnson IT, Fenwick GR (1987) The chemistry and biological significance of saponins in food and feedingstuffs. Crit Rev Food Sci Nutr 26:27–133

    CAS  PubMed  Google Scholar 

  • Rastogi RP, Malhotra BN (2002) Glossary of Indian medicinal plants. National Institute of Science Communication, New Delhi

    Google Scholar 

  • Richard D, Forrest MB (1982) Early history of wound treatment. J R Soc Med 75:198–205

    Google Scholar 

  • Saito H, Hayashi H (2015) Transformation rate between ferritin and hemosiderin assayed by serum ferritin kinetics in patients with normal iron stores and iron overload. Nagoya J Med Sci 77:571–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sammi S, Masud T (2009) Effect of different packaging systems on the quality of tomato (Lycopersicon esculentum var. Rio Grande) fruits during storage. Int J Food Sci Technol 44:918–926

    CAS  Google Scholar 

  • Santhakumari P, Prakasam A, Pugalendi KV (2003) Modulation of oxidative stress parameters by treatment with piper leaf in streptozotocin induced diabetic rats. Indian J Pharm 35:373–378

    Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    CAS  PubMed  Google Scholar 

  • Semalty M, Semalty A, Joshi GP, Rawat MSM (2009) Comparison of in vitro antioxidant activity of Trigonella foenum-graecum and T. corniculata seed. Res J Phytochem 3(3):63–67

    Google Scholar 

  • Shahidi F, Naczk M (1995) Food phenolics, sources, chemistry, effects, applications. Technomic Publishing Co Inc, Lancaster

    Google Scholar 

  • Slatnar A, Mikulič-Petkovšek M, Halbwirth H, Štampar F, Stich K, Veberič R (2012) Polyphenol metabolism of developing apple skin of a scab resistant and a susceptible apple cultivar. Trees Struct Funct 26:109–119

    CAS  Google Scholar 

  • Slatnar A, Mikulič-Petkovšek M, Veberič R, Štampar F (2016) Research on the involvement of phenolics in the defense of horticultural plants. Acta Agriculturae Slovenica 107(1):183–189

    CAS  Google Scholar 

  • Thomas SG, Rieu I, Steber CM (2005) Gibberellin metabolism and signaling. Vitam Horm 72:289–338

    CAS  PubMed  Google Scholar 

  • Tucakov J (1964) Pharmacognosy. Institute for text book issuing in SR Srbije, Beograd, pp 11–30

    Google Scholar 

  • Tugizimana F, Djami-Tchatchou AT, Steenkamp PA, Piater LA, Dubery IA (2019) Metabolomic analysis of defense-related reprogramming in Sorghum bicolor in response to Colletotrichum sublineolum infection reveals a functional metabolic web of phenylpropanoid and flavanoid pathways. Front Plant Sci 4(9):1840

    Google Scholar 

  • Uma Devi P, Murugan S, Puja S, Selvi S, Chinnaswamy P, Vijayanand E (2007) Antibacterial, in vitro lipid per oxidation and phytochemical observation on Achyranthes bidentata Blume. Pak J Nutr 6:447–451

    Google Scholar 

  • Van Sumere CF (1989) Methods in plant biochemistry. In: Dey PM, Harborne JB (eds) Plant phenolics, vol 1. Academic, London, p 29

    Google Scholar 

  • Venkatesan GK, Kannabiran K (2008) Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrate. World J Microbiol Biotechnol 24:2737–2740

    Google Scholar 

  • Vidyadhar S, Saidulu M, Gopal TK, Chamundeeswari D, Rao U, Banji D (2010) In vitro anthelmintic activity of the whole plant of Enicostemma littorale by using various extracts. Int J Appl Biol Pharm Technol 1(3):1119–1125

    Google Scholar 

  • Vollhardt KPC, Schore NE (1998) Organic chemistry: structure and function. W.H. Freeman, New York

    Google Scholar 

  • Walker JC, Stahmann MA (1955) Chemical nature of disease resistance in plants. Annu Rev Plant Physiol 6:351–366

    CAS  Google Scholar 

  • Wang GX (2010) In vivo anthelmintic activity of five alkaloids from Macleaya microcarpa (Maxim) Fedde against Dactylogyrus intermedius in Carassius auratus. Vet Parasitol 171:305–313

    CAS  PubMed  Google Scholar 

  • Wang GS, Han J, Zhao LW, Jiang DX, Liu YT, Liu XL (2010) Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine 17:1102–1105

    CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479

    CAS  PubMed  Google Scholar 

  • White RF (1979) Short communications: acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    CAS  PubMed  Google Scholar 

  • Wieringa-Brants DH, Schets FM (1988) Effect of salicylic acid and phenylserine on the hypersensitive reaction of tobacco to tobacco mosaic virus. J Phytopathol 1(23):333–343

    Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27(1):425–441

    Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3(8):1205–1216

    CAS  Google Scholar 

  • Wurochekke AU, Anthony EA, Obadiah W (2008) Biochemical effects on the liver and kidney of rats administered aqueous stem bark extract of Ximenia Americana. Afr J Biotechnol 7(16):2777–2780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, A.K., Singh, P.K., Aravind, M. (2020). Defensive Role of Plant Phenolics Against Pathogenic Microbes for Sustainable Agriculture. In: Lone, R., Shuab, R., Kamili, A. (eds) Plant Phenolics in Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_25

Download citation

Publish with us

Policies and ethics