Skip to main content

A Novel Data Prediction Technique Based on Correlation for Data Reduction in Sensor Networks

  • Conference paper
  • First Online:
Proceedings of International Conference on Artificial Intelligence and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1164))

Abstract

Environmental monitoring is among the most significant applications of wireless sensor networks (WSNs), which results in sensing, communicating, aggregating and transmitting large volumes of data over a very short period. Thus, a lot of energy is consumed in transmitting this redundant and correlated data to the basestation (BS) making it enormously challenging to achieve an acceptable network lifetime, which has become a bottleneck in scaling such applications. In order to proficiently deal with the energy utilization in successive data aggregation cycles, we propose a data prediction-based aggregation model, which will reduce data transmission by establishing relationship between sensor readings. The purpose of the proposed model is to exempt the sensor nodes (SN) from sending huge volumes of data for a specific duration during which the BS will predict the future data values and thus minimize the energy utilization of WSN. The study suggested an extended linear regression model, which determines resemblance in shape of data curve of contiguous data periods. We have used real sensor dataset of 54 SN that was deployed in the Intel Berkeley Research laboratory. We tested and compared our work with the recent prediction-based data reduction method. Results reveal that the proposed ELR model works better when compared with the other techniques in many assessment indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Osterweil, J. Polastre, M. Hamilton et al., Habitat monitoring with sensor networks. Commun. ACM Wirel. Sens. Netw. 47, 34–40 (2004)

    Google Scholar 

  2. O.I.S. Ingelrest, G. Barrenetxea, G. Schaefer et al., SensorScope: application-specific sensor network for environmental monitoring. ACM Trans. Sens. Netw. 6, 1–32 (2010). https://doi.org/10.1145/1689239.1689247

    Article  Google Scholar 

  3. H. Liu, Z. Meng, S. Cui, A Wireless sensor network prototype for environmental monitoring in greenhouses. Wirel. Commun. Netw. Mob. Comput. 2344–2347

    Google Scholar 

  4. K. Gupta, V. Sikka, Design issues and challenges in wireless sensor networks. Int. J. Comput. Appl. 0975–8887(112), 26–32 (2015). https://doi.org/10.5120/19656-1293

    Article  Google Scholar 

  5. A. Liu, X. Jin, G. Cui, Deployment guidelines for achieving maximum lifetime and avoiding energy holes in sensor network. Inf. Sci. (Ny) 230, 197–226 (2013)

    Article  Google Scholar 

  6. K. Jain, A. Kumar, C.K. Jha, Probabilistic-based energy-efficient single-hop clustering technique for sensor networks, in Bansal J., Gupta M., Sharma H., Agarwal B. (eds) Communication and Intelligent Systems. ICCIS 2019. Lecture Notes in Networks and Systems, vol 120 (Springer, Singapore, 2020)

    Google Scholar 

  7. K. Bicakci, I.E. Bagci, B. Tavli, Communication/computation tradeoffs for prolonging network lifetime in wireless sensor networks: the case of digital signatures. Inf. Sci. Int. J. 188, 44–63 (2012)

    Google Scholar 

  8. Y.-H. Zhu, W.-D. Wu, J. Pan, Y.-P. Tang, An energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Comput. Commun. 33(5), 639–647 (2010)

    Article  Google Scholar 

  9. A. Agarwal, K. Gupta, K. Yadav, A novel energy efficiency protocol for WSN based on optimal chain routing, in IEEE Xplore 2016 International Conference on Computing for Sustainable Global Development (INDIACom) (2016), pp. 488–493

    Google Scholar 

  10. K. Jain, A. Bhola, Data aggregation design goals for monitoring data in wireless sensor networks. J. Netw. Security Comput. Netw. 4(3), 1–9 (2018)

    Google Scholar 

  11. K. Gupta, K. Yadav, Data collection method to improve energy efficiency in wireless sensor network, in International Conference of Advance Research and Innovation (ICARI—2015) (2015)

    Google Scholar 

  12. P. Edara, A. Limaye, K. Ramamritham, Asynchronous in-network prediction: efficient aggregation in sensor networks. ACM Trans. Sens. Netw. 4, 25–34 (2008)

    Article  Google Scholar 

  13. H. Jiang, S. Jin, C. Wang, Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(6), 1064–1071 (2011)

    Google Scholar 

  14. S.K. Vuppala, A. Ghosh, K.A. Patil, A scalable WSN based data center monitoring solution with probabilistic event prediction, in 2012 IEEE 26th International Conference on Advanced Information Networking and Applications (2012), pp. 446–453

    Google Scholar 

  15. J. Zhao, H. Liu, Z. Li, W. Li, Periodic data prediction algorithm in wireless sensor networks. Adv. Wirel. Sens. Netw. 334, 695–701 (2013)

    Google Scholar 

  16. S. Samarah, A Data predication model for integrating wireless sensor networks and cloud computing. Procedia Comput. Sci. 52, 1141–1146 (2015). https://doi.org/10.1016/j.procs.2015.05.148

    Article  Google Scholar 

  17. Q. Liu, Y.Y. Zhang, J. Shen, B. Xiao, N. Linge, A WSN-based prediction model of microclimate in a greenhouse using an extreme learning approach. Adv. Commun. Technol. 133–137 (2015)

    Google Scholar 

  18. Z. Zhang, B. Deng, S. Chen L Li, An improved HMM model for sensing data predicting in WSN. Web-Age Inf. Manag. WAIM 2016 Lect. Notes Comput. Sci. 9658:31–42 (2016)

    Google Scholar 

  19. G.M. Dias, B. Bellalta, S. Oechsner, A survey about prediction-based data reduction in wireless sensor networks. ACM Comput. Surv. 49 (2016)

    Google Scholar 

  20. A. Agarwal, A. Dev, A data prediction model based on extended cosine distance for maximizing network lifetime of WSN. WSEAS Trans. Comput. Res. 7, 23–28 (2019)

    Google Scholar 

  21. S. Madden, Intel lab data (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, K., Agarwal, A., Kumar, A. (2021). A Novel Data Prediction Technique Based on Correlation for Data Reduction in Sensor Networks. In: Bansal, P., Tushir, M., Balas, V., Srivastava, R. (eds) Proceedings of International Conference on Artificial Intelligence and Applications. Advances in Intelligent Systems and Computing, vol 1164. Springer, Singapore. https://doi.org/10.1007/978-981-15-4992-2_56

Download citation

Publish with us

Policies and ethics