Skip to main content

Kinetic Assembly of Porous Coordination Networks Leads to Trapping Unstable Elemental Allotropes

  • Chapter
  • First Online:
Advances in Organic Crystal Chemistry

Abstract

Kinetic assembly is an important method for obtaining desired materials in chemical synthesis and material sciences. However, the application of this strategy to porous coordination networks has been limited. We highlight the kinetic assembly of porous coordination networks, which promote the production of interactive pore sites. These sites can activate or stabilize different guest molecules. The properties of interactive pores are exemplified by iodine chemisorption and small sulfur encapsulation. Using the interactive feature of these pores, we were able to trap small sulfur allotropes, such as S2, cyclo-S3, bent-S3, and S6, demonstrating their importance for the stabilization of unusual elemental species. Furthermore, several reactive elemental allotropes could also be incorporated into the interactive pores. Herein, we address the important aspects of creating interactive pore sites by kinetic assembly of porous coordination networks and present detailed case-by-case studies of small allotrope encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dichtel, W.R., Miljanić, O.Š., Zhang, W., Spruell, J.M., Patel, K., Aprahamian, I., Heath, J.R., Stoddart, J.F.: Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds. Acc. Chem. Res. 41, 1750–1761 (2008)

    Google Scholar 

  2. Dickson, A., Brooks III, C.L.: Native states of fast-folding proteins are kinetic traps. J. Am. Chem. Soc. 135, 4729–4734 (2013)

    Google Scholar 

  3. Hua, Q.X., Gozani, S.N., Chance, R.E., Hoffmann, J.A., Frank, B.H., Weiss, M.A.: Structure of a protein in a kinetic trap. Nat. Struct. Biol. 2, 129–138 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. Cheetham, A.K., Rao, C.N., Feller, R.F.: Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 46, 4780–4795 (2006)

    Article  Google Scholar 

  5. Zhu, Y., Hua, Z., Zhou, J., Wang, L., Zhao, J., Gong, Y., Wu, W., Ruan, M., Shi, J.: Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chem. Eur. J. 17, 14618–14627 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y., Gao, X., Xiao, Y., Zhao, Q., Yang, J., Yan, Y., Huang, J.: Temperature dependent coordinating self-assembly. Soft Matter 11, 2806–2811 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Zhong, Q.Z., Li, S., Chen, J., Xie, K., Pan, S., Richardson, J.J., Caruso, F.: Oxidation-mediated kinetic strategies for engineering metal-phenolic networks. Angew. Chem. Int. Ed. 58, 12563–12568 (2019)

    Article  CAS  Google Scholar 

  8. Michele, L.D., Varrato, F., Kotar, J., Nathan, S.H., Foffi, G., Eiser, E.: Multistep kinetic self-assembly of DNA-coated colloids. Nat. Commun. 4, 2007 (2013)

    Article  PubMed  CAS  Google Scholar 

  9. Batten, S.R., Robson, R.: Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998)

    Google Scholar 

  10. Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keefe, M., Yaghi, O.M.: Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Kitagawa, S., Kitaura, R., Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004)

    Article  CAS  Google Scholar 

  12. Kitagawa, S., Uemura, K.: Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 34, 109–119 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Bradshaw, D., Claridge, J.B., Cussen, E.J., Prior, T.J., Rosseinsky, M.J.: Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Kawano, M., Fujita, M.: Direct observation of crystalline-state guest exchange in coordination networks. Coord. Chem. Rev. 251, 2592–2605 (2007)

    Article  CAS  Google Scholar 

  15. Férey, G.: Hybrid porous solids: past, present, future. Chem. Rev. 37, 191–214 (2008)

    Google Scholar 

  16. Furukawa, H., Cordova, K.E., O’Keefe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    Article  PubMed  CAS  Google Scholar 

  17. Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Hoskins, B.F., Robson, R.: Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 5962–5964 (1989)

    Article  CAS  Google Scholar 

  19. Hoskins, B.F., Robson, R.: Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4ʺ,4′′′-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J. Am. Chem. Soc. 112, 1546–1554 (1990)

    Google Scholar 

  20. Fujita, M., Kwon, Y.J., Washizu, S., Ogura, K.: Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994)

    Article  CAS  Google Scholar 

  21. Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)

    CAS  Google Scholar 

  22. Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S.: Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)

    Google Scholar 

  23. Riou, D., Serre, C., Férey, G.: Composite microporous compounds (MIL-n): II. Hydrothermal synthesis and ab initio resolution by X-ray powder diffraction of MIL-5: a vanadodiphosphonate with a three-dimensional neutral framework. J. Solid. State. Chem. 141, 89–93 (1998)

    Google Scholar 

  24. Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, J., Wojtas, L., Larsen, R.W., Eddaoudi, M., Zaworotko, M.J.: Temperature and concentration control over interpenetration in a metal–organic material. J. Am. Chem. Soc. 131, 17040–17041 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Bara, D., Wilson, C., Mörtel, M., Khusniyarov, M.M., Ling, S., Slater, B., Sproules, S., Forgan, R.S.: Kinetic control of interpenetration in Fe-biphenyl-4,4′-dicarboxylate metal-organic frameworks by coordination and oxidation modulation. J. Am. Chem. Soc. 141, 8346–8357 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J.E., Tang, C.C., Allan, D.R., Rizkallah, P.J., Hubberstey, P., Champness, N.R., Thomas, K.M., Blake, A.J., Schröder, M.: A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710–716 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Yu, T., Wang, S., Li, X., Gao, X., Zhou, C., Cheng, J., Li, B., Li, J., Chang, J., Hou, H., Liu, Z.: Roles of temperature, solvent, M/L ratios and anion in preparing complexes containing a Himta ligand. CrystEngComm 18, 1350–1362 (2016)

    Article  CAS  Google Scholar 

  29. De, D., Neogi, S., Bharadwaj, P.K.: Stoichiometry controlled structural variation in three-dimensional Zn(II)–frameworks: single-crystal to single-crystal transmetalation and selective CO2 adsorption. Cryst. Growth Des. 16, 5238–5246 (2016)

    Article  CAS  Google Scholar 

  30. Wee, L.H.H., Meledina, M., Turner, S., Van Tendeloo, G., Zhang, K., Rodriguez-Albelo, L.M., Masala, A., Bordiga, S., Jiang, J., Navarro, J.A.R., Kirschhock, C.E.A., Martens, J.A.: 1D–2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J. Am. Chem. Soc. 139, 819–828 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R.E., Suckert, S., Näther, C.: Thermodynamically metastable thiocyanato coordination polymer that shows slow relaxations of the magnetization. Inorg. Chem. 54, 2893–2901 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Forster, P.M., Burbank, A.R., Livage, C., Férey, G., Cheetham, A.K.: The role of temperature in the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates. Chem. Commun. 4, 368–369 (2004)

    Article  Google Scholar 

  33. Näther, C., Bhosekar, G., Jess, I.: Preparation of stable and metastable coordination compounds: insight into the structural, thermodynamic, and kinetic aspects of the formation of coordination polymers. Inorg. Chem. 46, 8079–8087 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, J.P., Huang, X.C., Chen, X.M.: Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 38, 2385–2396 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Nagarkar, S.S., Chaudhari, A.K., Ghosh, S.K.: Role of temperature on framework dimensionality: supramolecular isomers of Zn3(RCOO)8 based metal organic frameworks. Cryst. Growth Des. 12, 572–576 (2012)

    Article  CAS  Google Scholar 

  36. Manna, B., Chaudhari, A.K., Joarder, B., Karmakar, A., Ghosh, S.K.: Dynamic structural behavior and anion-responsive tunable luminescence of a flexible cationic metal–organic framework. Angew. Chem. Int. Ed. 52, 998–1002 (2013)

    Google Scholar 

  37. Bernini, M.C., de la Pena-O’Shea, V.A., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E.V., Narda, G.E., Illas, F., Monge, M.Á.: Thermodynamic and kinetic control on the formation of two novel metal-organic frameworks based on the Er(III) ion and the asymmetric dimethylsuccinate ligand. Inorg. Chem. 49, 5063–5071 (2010)

    Google Scholar 

  38. Gándara, F., de la Pena-O’Shea, V.A., Illas, F., Snejko, N., Proserpio, D.M., Gutiérrez-Puebla, E., Monge, M.A.: Three lanthanum MOF polymorphs: insights into kinetically and thermodynamically controlled phases. Inorg. Chem. 48, 4707–4713 (2009)

    Google Scholar 

  39. Dikhtiarenko, A., Serra-Crespo, P., Castellanos, S., Pustovarenko, A., Mendoza-Meroño, R., Garcia-Granda, S., Gascon, J.: Temperature-dependent supramolecular isomerism of lutetium-aminoterephthalate metal-organic frameworks: synthesis, crystallography, and physical properties. Cryst. Growth. Des. 16, 5636–5645 (2016)

    Article  CAS  Google Scholar 

  40. Martí-Rujas, J., Kawano, M.: Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis. Acc. Chem. Res. 46, 493–505 (2013)

    Article  PubMed  CAS  Google Scholar 

  41. Kitagawa, H., Ohtsu, H., Kawano, M.: Kinetic assembly of a thermally stable porous coordination network based on labile CuI units and the visualization of I2 sorption. Angew. Chem. Int. Ed. 52, 12395–12399 (2013)

    Google Scholar 

  42. Kawano, M., Haneda, T., Hashizume, D., Izumi, F., Fujita, M.: A selective instant synthesis of a coordination network and its ab initio powder structure determination. Angew. Chem. Int. Ed. 47, 1269–1271 (2008)

    Article  CAS  Google Scholar 

  43. Biradha, K., Fujita, M.: A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew. Chem. Int. Ed. 41, 3392–3395 (2002)

    Article  CAS  Google Scholar 

  44. Ohara, K., Martí-Rujas, J., Haneda, T., Kawano, M., Hashizume, D., Izumi, F., Fujita, M.: Formation of a thermally stable, porous coordination network via a crystalline-to-amorphous-to-crystalline phase transition. J. Am. Chem. Soc. 131, 3860–3861 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. Martí-Rujas, J., Islam, N., Hashizume, D., Izumi, F., Fujita, M., Kawano, M.: Dramatic structural rearrangements in porous coordination networks. J. Am. Chem. Soc. 133, 5853–5860 (2011)

    Article  CAS  Google Scholar 

  46. Ohtsu, H., Bennett, T.D., Kojima, T., Keen, D.A., Niwa, Y., Kawano, M.: Amorphous–amorphous transition in a porous coordination polymer. Chem. Commun. 53, 7060–7063 (2017)

    Article  CAS  Google Scholar 

  47. Bennett, T.D., Goodwin, A.L., Dove, M.T., Keen, D.A., Tucker, M.G., Barney, E.R., Soper, A.K., Bithell, E.G., Tan, J.C., Cheetham, A.K.: Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 104, 115503 (2010)

    Article  PubMed  CAS  Google Scholar 

  48. Bennett, T.D., Cheetham, A.K.: Amorphous metal-organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014)

    Article  CAS  PubMed  Google Scholar 

  49. Bennett, T.D., Tan, J.C., Yue, Y., Baxter, E., Ducati, C., Terrill, N.J., Yeung, H.H.M., Zhou, Z., Chen, W., Henke, S., Cheetham, A.K., Greaves, G.N.: Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. Martí-Rujas, J., Matsushita, Y., Izumi, F., Fujita, M., Kawano, M.: Solid–liquid interface synthesis of microcrystalline porous coordination networks. Chem. Commun. 46, 6515–6517 (2010)

    Article  CAS  Google Scholar 

  51. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G.: The halogen bond. Chem. Rev. 116, 2478–2601 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Resnati, G., Boldyreva, E., Bombicz, P., Kawano, M.: Supramolecular interactions in the solid state. IUCrJ 2, 675–690 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takaoka, K., Kawano, M., Ozeki, T., Fujita, M.: Crystallographic observation of an olefin photodimerization reaction that takes place via thermal molecular tumbling within a self-assembled host. Chem. Commun. 15, 1625–1627 (2006)

    Article  CAS  Google Scholar 

  54. Ohmori, O., Kawano, M., Fujita, M.: A two-in-one crystal: uptake of two different guests into two distinct channels of a biporous coordination network. Angew. Chem. Int. Ed. 44, 1962–1964 (2005)

    Article  CAS  Google Scholar 

  55. Ohmori, O., Kawano, M., Fujita, M.: Construction of biporous coordination networks via π–π interaction. CrystEngComm 7, 255–259 (2005)

    CAS  Google Scholar 

  56. Kawano, M., Kawamichi, T., Haneda, T., Kojima, T., Fujita, M.: The modular synthesis of functional porous coordination networks. J. Am. Chem. Soc. 129, 15418–15419 (2007)

    Google Scholar 

  57. Kawamichi, T., Kodama, T., Kawano, M., Fujita, M.: Single-crystalline molecular flasks: chemical transformation with bulky reagents in the pores of porous coordination networks. Angew. Chem. Int. Ed. 47, 8030–8032 (2008)

    Article  CAS  Google Scholar 

  58. Haneda, T., Kawano, M., Kawamichi, T., Fujita, M.: Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. J. Am. Chem. Soc. 130, 1578–1579 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Kawamichi, T., Inokuma, Y., Kawano, M., Fujita, M.: Regioselecitive Huisgen cycloaddition within porous coordination networks. Angew. Chem. Int. Ed. 49, 2375–2377 (2010)

    Google Scholar 

  60. Kawamichi, T., Haneda, T., Kawano, M., Fujita, M.: X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009)

    Article  CAS  PubMed  Google Scholar 

  61. Inokuma, Y., Kawano, M., Fujita, M.: Crystalline molecular flasks. Nat. Chem. 3, 349–358 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. Ohtsu, H., Choi, W., Islam, N., Matsushita, Y., Kawano, M.: Selective trapping of labile S3 in a porous coordination network and the direct X-ray observation. J. Am. Chem. Soc. 135, 11449–11452 (2013)

    Google Scholar 

  63. Steudel, R., Eckert, B.: Solid sulfur allotropes. Top. Curr. Chem. 230, 1–79 (2003)

    Article  CAS  Google Scholar 

  64. Steudel, R., Steudel, Y., Wong, M.W.: Speciation and thermodynamics of sulfur vapor. Top. Curr. Chem. 230, 117–134 (2003)

    Article  CAS  Google Scholar 

  65. Meyer, B.: Elemental sulfur. Chem. Rev. 76, 367–388 (1976)

    Article  CAS  Google Scholar 

  66. McCarthy, M.C., Thorwirth, S., Gottlieb, C.A., Thaddeus, P., Gupta, H., Stanton, J.F.: Rotational spectroscopy and equilibrium structures of S3 and S4. J. Chem. Phys. 123, 054326 (2005)

    Article  PubMed  CAS  Google Scholar 

  67. Ichikawa, M., Kimura, T., Fukuoka, A.: Stud. Surf. Sci. Catal. 60, 335–342 (1991)

    Google Scholar 

  68. Maleki, B., Salehabadi, H.: Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives. Eur. J. Chem. 4, 377–380 (2010)

    Article  CAS  Google Scholar 

  69. Choi, W., Ohtsu, H., Matsushita, Y., Kawano, M.: Safe P4 reagent in a reusable porous coordination network. Dalton Trans. 45, 6357–6360 (2016)

    Article  CAS  PubMed  Google Scholar 

  70. Ohtsu, H., Kawano, M.: Br2 induced oxidative pore modification of a porous coordination network. Dalton Trans. 45, 489–493 (2016)

    Article  CAS  PubMed  Google Scholar 

  71. Lang, J.P., Xu, Q.F., Yuan, R.X., Abrahams, B.F.: {[WS4Cu4(4,4ʹ-bpy)4][WS4Cu4I4(4,4ʹ-bpy)2]}—an unusual 3D porous coordination polymer formed from the preformed cluster [Et4N]4[WS4Cu4I6]. Angew. Chem. Int. Ed. 43, 4741–4745 (2004)

    Article  CAS  Google Scholar 

  72. Holzer, W., Murphy, W.F., Bernstein, H.J.: Resonance Raman effect and resonance fluorescence in halogen gases. J. Chem. Phys. 52, 399–407 (1970)

    Article  CAS  Google Scholar 

  73. Congeduti, A., Nardone, M., Postorino, P.: Polarized Raman spectra of a single crystal of iodine. Chem. Phys. 256, 117–123 (2000)

    Article  CAS  Google Scholar 

  74. Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  75. El-Sheshtawy, H.S., Bassil, B.S., Assaf, K.I., Kortz, U., Nau, W.M.: Halogen bonding inside a molecular container. J. Am. Chem. Soc. 134, 19935–19941 (2012)

    Article  CAS  PubMed  Google Scholar 

  76. Ohtsu, H., Kawano, M.: Kinetic assembly of coordination networks. Chem. Commun. 53, 8818–8829 (2017)

    Article  CAS  Google Scholar 

  77. Hathaway, B.J.: In: Wilkinson, G., Gillard, R.D., McCleverty, J.A. (eds.) Comprehensive Coordination Chemistry, vol. 5, pp. 533–774. Pergamon, Oxford (1987)

    Google Scholar 

  78. Ohara, K., Yamaguchi, K.: Cold-spray ionization mass spectrometric detection of a coordination oligomer. Anal. Sci. 28, 635–637 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. Allcock, H.R., Siegel, L.A.: Phosphonitrilic compounds. III. Molecular inclusion compounds of tris(o-phenylenedioxy)phosphonitrile trimer. J. Am. Chem. Soc. 86, 5140–5144 (1964)

    Google Scholar 

  80. Hertzsch, T., Budde, F., Weber, E., Hulliger, J.: Supramolecular-wire confinement of I2 molecules in channels of the organic zeolite tris(o-phenylenedioxy)cyclotriphosphazenephonitrile trimer. Angew. Chem. Int. Ed. 41, 2281–2284 (2002)

    Article  CAS  Google Scholar 

  81. Kitagawa, H., Ohtsu, H., Cruz-Cabeza, A.J., Kawano, M.: Isolation and evolution of labile sulphur allotropes via kinetic encapsulation in interactive porous networks. IUCrJ 3, 232–236 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flemming, B., Wolczanski, P.T., Hoffmann, R.: Transition metal complexes of cyclic and open ozone and thiozone. J. Am. Chem. Soc. 127, 1278–1285 (2005)

    Article  CAS  Google Scholar 

  83. Mück, L.A., Lattanzi, V., Throwirth, S., McCarthy, M.C., Gauss, J.: Cyclic SiS2: a new perspective on the walsh rules. Angew. Chem. Int. Ed. 51, 3695–3698 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohtsu, H., Usov, P.M., Kawano, M. (2020). Kinetic Assembly of Porous Coordination Networks Leads to Trapping Unstable Elemental Allotropes. In: Sakamoto, M., Uekusa, H. (eds) Advances in Organic Crystal Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5085-0_12

Download citation

Publish with us

Policies and ethics