Skip to main content

Pulse Oximetry for the Measurement of Oxygen Saturation in Arterial Blood

  • Chapter
  • First Online:
Studies in Skin Perfusion Dynamics

Abstract

The method of photoplethysmography (PPG) detailed in Chapters 1 and 2 gained enormous prominence due to the development of pulse oximetry. In pulse oximetry, the fact that hemoglobin bound with oxygen (called oxyhemoglobin) and hemoglobin without oxygen (deoxy-hemoglobin or reduced hemoglobin) absorb/reflect light differently is exploited in ascertaining, noninvasively, oxygen saturation in arterial blood. Most pulse oximeters that are in existence today use a couple of PPGs obtained using red and infrared wavelength light sources and calculate oxygen saturation in arterial blood using the red and IR PPGs and an empirical equation. This chapter details the development of pulse oximetry. It describes in detail a couple of novel methods of oxygen saturation calculation using the red and IR PPGs. The methods presented here do not need any calibration to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.N. Bruce, Biomedical Signal Processing and Signal Modeling (John Wiley & Sons, NY, 2001)

    Google Scholar 

  2. R.M. Rangayyan, Biomedical Signal Analysis: A Case Study Approach, IEEE Press Series on Biomedical Engineering (John Wiley & Sons, Singapore, 2002)

    Google Scholar 

  3. L.S. Sornmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier academic press, USA, 2005)

    Google Scholar 

  4. W.F. Ganong, Review of Medical Physiology, 16th edn. (Appleton & Lange, Norwalk, CT, 1993)

    Google Scholar 

  5. D.L. Kasper, Harrison’s principles of internal medicine, 16th ed. (McGraw-Hill, NY, 2005)

    Google Scholar 

  6. K. John, J. Li, Dynamics of vascular system, Series on bioengineering & biomedical engineering, vol 1 (World scientific publishing Co. Pte. Ltd, Singapore, 2004)

    Google Scholar 

  7. R.D. Miller, Miller’s anesthesia, 6th edn. (Elsevier Churchill Livingstone, Philadelphia, 2005)

    Google Scholar 

  8. J.W. Severinghaus, P.B. Astrup, History of blood gas analysis-VI. Oximetry. J Clin Monit 2(4), 270–288 (1986)

    Article  Google Scholar 

  9. J.G. Webster, Design of Pulse Oximeters (Taylor & Francis Group, NY, 1999)

    Google Scholar 

  10. J.A. Dorsch, S.E. Dorsch, Understanding Anaesthesia Equipment (Williams & Wilkins, Baltimore, 1999)

    Google Scholar 

  11. G.D. Baura, System Theory and Practical Applications of Biomedical Signals, IEEE Press Series on Biomedical Engineering (John Wiley & Sons, NJ, 2002)

    Google Scholar 

  12. T. Ahrens, K. Rutherford, Essentials of Oxygenation (Jones & Barlett, Boston, 1993)

    Google Scholar 

  13. Y. Pole, Evolution of the pulse oximeter. Int Congress Series 1242, 137–142 (2002)

    Article  Google Scholar 

  14. C. Secker, P. Spiers, Accuracy of pulse oximetry in patients with low systematic vascular resistance. Anesthesia 52(2), 127–130 (1998)

    Article  Google Scholar 

  15. A.J. Williams, ABC of oxygen: Assessing and interpreting arterial blood gases and acid-base balance. BMJ 317, 1213–1216 (1998)

    Article  Google Scholar 

  16. A.B. Hertzman, The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am J Physiol 124, 328–340 (1938)

    Article  Google Scholar 

  17. K. Nakajima, T. Tamura, H. Miike, Monitoring of heart and respiratory rates by Photoplethysmography using a digital filtering technique. Med Eng Phys 18(5), 365–372 (1966)

    Article  Google Scholar 

  18. V. Blazek, U. Schultz-Ehrenburg, Quantitative Photoplethysmography: Basic Facts and Examination Tests for Evaluating Peripheral Vascular Functions (VDI Verlag, Düsseldorf, 1996)

    Google Scholar 

  19. S. Sarin, D.A. Shields, J.H. Scurr, P.D. Smith, Photoplethysmography: a valuable noninvasive tool in the assessment of venous dysfunction ? J Vasc Surg 16(2), 154–162 (1992)

    Article  Google Scholar 

  20. K. Matthes, Untersuchungen über die Sauerstoffsättigung des menschlichen Arterienblutes—Studies on the Oxygen Saturation of Arterial Human Blood. Naunyn-Schmiedeberg’s Archives of Pharmacology (in German) 179(6), 698–711 (1935)

    Article  Google Scholar 

  21. G.A. Millikan, The oximeter, an instrument for measuring continuously the arterial saturation of arterial blood in man. Rev Sci Instrum 13, 434–444 (1942)

    Article  ADS  Google Scholar 

  22. E.A.G. Goldie, Device for continuous indication of oxygen saturation of circulating blood in man”, J Sci Instrum 19, 19–23 (1942)

    Google Scholar 

  23. E.H. Wood, J.E. Geraci, Photoelectric determination of arterial oxygen saturation in man. J Lab Clin Med 34, 387–401 (1949)

    Google Scholar 

  24. R. Brinkman, W.G. Zijlstra, Determination and continuous registration of the percentage oxygen saturation in clinical conditions. Arch Chir Neerl 1, 177–183 (1949)

    Google Scholar 

  25. P. Sekelj, A.L. Johnson, H.E. Hoff, P.M. Scherch, A photoelectric method for the determination of arterial oxygen saturation in man. Amer Heart J 42, 826–848 (1951)

    Article  Google Scholar 

  26. M.L. Polanyi, R.M. Hehir, New reflection oximeter. Rev Sci Instru 31(4), 401–403 (1960)

    Article  ADS  Google Scholar 

  27. A. Cohen, N.A. Wardsworth, Light emitting diode skin reflectance oximeter. Med Biol Eng 10, 385–391 (1974)

    Google Scholar 

  28. T. Aoyagi, M. Kishi, K. Yamaguchi, S. Watanabe, Improvement of an ear-piece oximeter, in Proc. Abstracts 13th Annu. Japanese Soc Med Electro, Biol Eng (JSMEBE, Osaka, 1994), pp. 90–91

    Google Scholar 

  29. E.B. Merrick, T.J. Hayes, Continuous, non-invasive measurements of arterial blood oxygen levels. Hewlett-Packard J 28(2), 2 – 9 (1976)

    Google Scholar 

  30. S. Takatani, J. Ling, Optical oximetry sensors for whole blood and tissue. IEEE Eng Med Biol Mag 347–357 (1994)

    Google Scholar 

  31. R.J. Falconer, B.J. Robinson, Comparison of pulse oximeters: accuracy at low arterial pressure in volunteers. BJA 65(4), 552–557 (1990)

    Article  Google Scholar 

  32. F.W. Cheney, The ASA closed claims study after the pulse oximeter. ASA Newsletter, vol. 54 (1990)

    Google Scholar 

  33. B.L. Horecker, The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J Biol Chem 148(1), 173–183 (1943)

    Article  Google Scholar 

  34. W.G. Zijlstra, Buursma A and Meeuwsen-van der Roest WP, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin and methemoglobin.” Clin Chem 37(9), 1633–1638 (1991)

    Article  Google Scholar 

  35. J.G. Kim, M. Xia, H. Liu, Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue. IEEE Eng Med Biol Mag 24(2), 118–121 (2005)

    Article  Google Scholar 

  36. Y. Mendelson, Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem 38(9), 1601–1607 (1992)

    Article  Google Scholar 

  37. J.E. Sinex, Pulse oximetry: Principles and limitations. Am J Emerg Med 17(1), 59–68 (1999)

    Article  Google Scholar 

  38. J.P. Decock, L. Tarassenko, Pulse oximetry: Theoretical and experimental models. Med Biol Eng Comput 31, 291–300 (1993)

    Article  Google Scholar 

  39. M.W. Wukitsch, M.T. Petterson, D.R. Tobler, J.A. Pologe, Pulse oximetry: Analysis of theory, technology, and practice. J Clin Monit 4(4), 290–301 (1988)

    Article  Google Scholar 

  40. T.L. Rusch, R. Sankar, J.E. Scharf, Signal processing methods for pulse oximetry. Comput Biol Med 26(2), 143–159 (1996)

    Article  Google Scholar 

  41. K.A. Reddy, B. George, N.M. Mohan, V.J. Kumar, A novel method of measurement of oxygen saturation in arterial blood, in Proc. I2MTC (Victoria, BC, Canada, 2008), pp. 1627–1630

    Google Scholar 

  42. K.A. Reddy, B. George, N.M. Mohan, V.J. Kumar, A novel calibration-free method of measurement of oxygen saturation in arterial blood. IEEE Trans Meas and Instrum. 58(15), 1699–1705 (2009)

    Article  Google Scholar 

  43. M. Brown, J.S. Vender, Noninvasive oxygen monitoring. Crit Care Clin 4(3), 493–509 (1998)

    Google Scholar 

  44. W.A. Bowes, B.C. Corke, J. Hulka, Pulse oximetry: a review of the theory, accuracy, and clinical applications. Obstet Gynecol 74(3 Pt 2), 541–546 (1989)

    Google Scholar 

  45. A. Huch, R. Huch, V. Konig, M.R. Neuman, D. Parker, J. Yount Lubbers, Limitations of pulse oximetry. Lancet 1(8581), 357–358 (1988)

    Article  Google Scholar 

  46. D. Amar, J. Neidzwski, A. Wald, A.D. Finck, Fluorescent light interferes with pulse oximetry. J Clin Monit 5(2), 135–136 (1989)

    Article  Google Scholar 

  47. C.J. Cote, E.A. Goldstein, W.H. Buschman, D.C. Hoaglin, The effect of nail polish on pulse oximetry. Anesth Analg 67(7), 683–686 (1988)

    Google Scholar 

  48. M.M. Chan, M.M. Chan, E.D. Chan, What is the effect of fingernail polish on pulse oximetry? Chest 123(6), 2163–2164 (2003)

    Article  Google Scholar 

  49. A.L. Ries, L.M. Prewitt, J.J. Johnson, Skin color and ear oximetry. Chest 96(2), 287–290 (1989)

    Article  Google Scholar 

  50. J.A. Langton, C.D. Hanning, Effect of motion artefact on pulse oximeters: evaluation of four instruments and finger probes. Br J Anaesth 65, 564–570 (1990)

    Article  Google Scholar 

  51. J.L. Plummer, A.Z. Zakaria, A.H. Ilsley, R.R.L. Fronsko, H. Owen, Evaluation of the influence of movement on saturation readings from pulse oximeters. Anesthesia 50, 423–426 (1966)

    Article  Google Scholar 

  52. S.J. Barker, K.K. Tremper, J. Hyatt, Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry. Anesthesiology 70(1), 112–117 (1989)

    Article  Google Scholar 

  53. W.P. Bozeman, R.A. Myers, R.A. Barish, Confirmation of pulse oximetry gap in carbonmonoxide poisoning. Ann Emerg Med 30, 608–611 (1987)

    Article  Google Scholar 

  54. A. Sidi, D.A. Paulus, W. Rush, N. Gravenstein, F.R. Davis, Methylene blue and indocyanine green artifactually lower pulse oximetry readings of oxygen saturation: Studies in dogs. J Clin Monit 3(4), 249–256 (1987)

    Google Scholar 

  55. M.S. Scheller, Unger RJ and Kelner, Effects of intravenously administered dyes on pulse oximetry readings. Anesthesiology 65(5), 550–552 (1986)

    Article  Google Scholar 

  56. L.M. Schnapp, N.H. Cohen, Pulse oximetry: uses and abuses. Chest 98(5), 1244–1250 (1990)

    Article  Google Scholar 

  57. N.S. Trivedi, A.F. AGhouri, N.K. Shah, E. Lai, S.J. Barker, Effects of motion, ambient light and hypoperfusion on pulse oximeter function. J Clin Anesth 9(3), 179–183 (1997)

    Article  Google Scholar 

  58. R.R. Fluck Jr., C. Schroeder, G. Frani, B. Kropf, B. Engbretson, Does ambient light affect the accuracy of pulse oximetry? Resp Care 48(7), 677–680 (2003)

    Google Scholar 

  59. M. Meinke, G. Muller, J. Helfmann, M. Friebel, Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range. J Biomed Opt 12(1), 014024 (2007)

    Article  Google Scholar 

  60. https://sine.ni.com/nips/cds/view/p/lang/en/nid/14040.

  61. S.J. Barker, N.K. Shah, The effects of motion on the performance of pulse oximeter in volunteers. Anesthesiology 85(4), 101–108 (1996)

    Article  Google Scholar 

  62. A.B. Barreto, L.M. Vicente, I.K. Persad, Adaptive cancellation of motion artifact in photoplethysmographic blood volume pulse measurements for exercise evaluation. Proc IEEE-EMBC and CMBEC 2, 983–984 (1995)

    Google Scholar 

  63. A.R. Relente, L.G. Sison, Characterization and Adaptive Filtering of Motion Artifacts in Pulse Oximetry Using Accelerometers (Houston, TX, Proc. Conf. EMGS/BMES, 2002), pp. 1769–1770

    Google Scholar 

  64. K.W. Can, Y.T. Zhang, Adaptive reduction of motion artifact from photoplethysmographic recordings using a variable step-size LMS filter. Sensors 2, 1343–1346 (2002)

    Google Scholar 

  65. M. Goetzee, Z. Elghazzawi, Noise-resistant pulse oximetry using a synthetic reference signal. IEEE Trans Biomed Engg 47(8), 1018–1026 (2000)

    Article  Google Scholar 

  66. J.M. Goldman, M.T. Petterson, R.J. Kopotic, J.S. Barker, Masimo signal extraction pulse oximetry. J Clin Monit Comput 16(7), 475–483 (2000)

    Article  Google Scholar 

  67. J. Lee, W. Jung, I. Kang, Y. Kim, G. Lee G, Design of filter to reject motion artifact of pulse oximetry. Comput Stand Interf 26(3), 241–249 (2004)

    Google Scholar 

  68. C.M. Lee, Y.T. Zhang, Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach. Proc. IEEE EMBS Asian-Pacific Conf on Biomed Engg, 194–195 (2003)

    Google Scholar 

  69. Y.J.A. Foo, Comparison of wavelet transformation and adaptive filtering in restoring artifact-induced time-related measurement. Biomed Signal Proc Control 1, 93–98 (2006)

    Google Scholar 

  70. Y.S. Yan, C.C. Poon, Y.T. Zhang, Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner Ville distribution. J Neuro engineering Rehabil 2:3 (2005). Available from https://www.jneuroengrehab.com/content/2/1/3.

  71. M.J. Hayes, P.R. Smith, Artifact reduction in photoplethysmography. Appl Opt 37(31), 7437–7446 (1998)

    Google Scholar 

  72. M.J. Hayes, P.R. Smith, A new method for pulse oximetry possessing inherent insensitivity to artifact. IEEE Trans Biomed Engg 48(4), 452–461 (2001)

    Google Scholar 

  73. B.S. Kim, S.K. Yoo, Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans Biomed Engg 53(3), 566–568 (2006)

    Article  MathSciNet  Google Scholar 

  74. P.F. Stetson, Independent component analysis of pulse oximetry signals, in Proc 26th Annual Intern Conf IEEE EMBS (San Francisco, CA, 2004), pp. 231–234

    Google Scholar 

  75. J. Yao, S. Warren, A short study to assess the potential of independent component analysis for motion artifact separation in wearable pulse oximeter signals, in Proc 27th Annual Conf IEEE Engg Med and Biol (Shanghai, China, 2005), pp. 3585–3588.

    Google Scholar 

  76. K.A. Reddy, V.J. Kumar, Motion artifact reduction in photoplethysmographic signals using singular value decomposition, Proc. 24th Int. Conf. IEEE (IMTC-2007, Warsaw, Poland, 2007), pp. 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesh Kumar V. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar V., J., Reddy, K.A. (2021). Pulse Oximetry for the Measurement of Oxygen Saturation in Arterial Blood. In: Blazek, V., Kumar V., J., Leonhardt, S., Mukunda Rao, M. (eds) Studies in Skin Perfusion Dynamics. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5449-0_3

Download citation

Publish with us

Policies and ethics