Skip to main content

An Analysis on the Advanced Research in Additive Manufacturing

  • Conference paper
  • First Online:
Advances in Production and Industrial Engineering

Abstract

Additive manufacturing (AM) is a process in which materials are added to the other material in the form of layers through CAD/CAM instead of removing as conventional production process. This design driven technology is a new approach in the manufacturing. AM is advantageous in comparison with conventional production by reduction of material consumption and time, controlling and optimizing the production parameter for better performances of the products. It is also used for coating of different materials on elements or parts to prevent corrosion and wear. A composite layer can be formed on elements or parts. This paper represents the research, developments, and applications of additive manufacturing process. Efforts are made to get the knowledge about the materials selection, process parameters, and their optimization for friction surfacing through systematic review of research articles, technical notes, etc. The conventional techniques are less effective and large quantity of material converted to scrap material after comparatively long production process. AM can be used for highly complex structures as it has a high degree of design freedom. In contrast to pure additive processes, an additive-subtractive process called hybrid process is used commercially. The review of several research papers provides an idea of emerging solid-state surface coating process based on friction surfacing to improve properties and grain structure of the coating and substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng

    Google Scholar 

  2. Thompson MK, Moroni G, Vaneker T, Fadel G, Ian Campbell R, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann—Manuf Technol 65:737–760

    Article  Google Scholar 

  3. Gibson I, Rosen DW, Stucker BE (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York

    Book  Google Scholar 

  4. Dilip JS, Babu, VaradhaRajan S, Rafi KH, JanakiRam GD, Stucker BE (2013) Use of friction surfacing for additive manufacturing, materials and manufacturing processes 28:1–6

    Google Scholar 

  5. Grainger S, Blunt J (1998) Engineering coatings—design and application, 2nd edn. Abington Publishing, Cambridge, UK

    Book  Google Scholar 

  6. Aydin M (2015) Additive manufacturing: is it a new era for furniture production? J Mech Eng Auto 5:338–347

    Google Scholar 

  7. Hopkinson N, Hauge RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, West Sussex

    Google Scholar 

  8. Rafi KH, JanakiRam GD, Phanikumar G, Rao KP (2010) Friction surfaced tool steel (H13) coatings on low carbon steel: a study on the effectsof process parameters on coating characteristics and integrity. Sur Coat Tech 205:232–242

    Google Scholar 

  9. Puli R, Kumar EN, Janaki Ram GD (2011) Microstructural characterization of friction surfaced martensitic stainless steel AISI 410 coatings. Trans Indian Inst Metals 64(1–2):41–45

    Google Scholar 

  10. Bedford GM, Vitanov VI, Voutchkov II (2001) On the thermo-mechanical events during friction surfacing of high speed steels. Surf Coat Technol 141:34–39

    Article  Google Scholar 

  11. Reddy GM, Prasad KS, Rao KS, Mohandas T (2011) Friction surfacing of titanium alloy with aluminum metal matrix composite. Surf Eng 27(2):92–98

    Google Scholar 

  12. Yamashita Y, Fujita K (2001) Newly developed repairs on welded area of lwr stainless steel by friction surfacing. J Nucl Sci Technol 38:896–900

    Article  Google Scholar 

  13. Seefeld T, Theiler C, Schubet E, Sepold G (1999) Laser generation of graded metal-carbide components. Mater Sci Forum 308–311:459–466

    Article  Google Scholar 

  14. Nikhilesh C, Krishan KC (2013) Metal matrix composites, 2nd edn. Springer, New York

    Google Scholar 

  15. Paulo Davim J (2012) Machining of metal matrix composites. Springer, NewYork

    Book  Google Scholar 

  16. Tofail1 SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2017) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 1–16 (Press)

    Google Scholar 

  17. Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Business Horizons (Press)

    Google Scholar 

  18. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89

    Article  Google Scholar 

  19. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies-rapid prototyping to direct digital manufacturing. Springer

    Google Scholar 

  20. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms J Int Mat Rev 57(3):133–164

    Google Scholar 

  21. Manthiram A, Bourell DL, Marcus HL (1993) Nanophase materials in solid free- form fabrication. JOM 45:66–70

    Article  Google Scholar 

  22. Asgharzadeh H, Simchi A (2005) Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder. Mater Sci Eng A 403:290–298

    Google Scholar 

  23. Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46:1459–1468

    Article  Google Scholar 

  24. Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assembly Autom 23:357–371

    Article  Google Scholar 

  25. Chandrakar AK, Kachhawaha A (2015) Application of additive manufacturing on three dimensional printing. IJSR 4:2012–2016

    Google Scholar 

  26. Buswell RA, Soar RC, Gibb AGF, Thorpe A (2007) Freeform construction: mega-scale rapid manufacturing for construction. Autom Constr 16:224–231

    Article  Google Scholar 

  27. Vaezi M, Seitz H, Yang SF (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Tech 67(5–8):1721–1754

    Google Scholar 

  28. Garg A, Lam JSM, Savalani MM (2015) A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int J Adv Manuf Tech 80(1–4):555–565

    Google Scholar 

  29. Shahalia H, Jaggessara A, Yarlagaddaa PKDV (2017) Recent advances in manufacturing and surface modification of titanium orthopedic applications. Procedia Eng 174:1067–1076

    Article  Google Scholar 

  30. Samarjy RSM, Kaplan AFH (2017) Using laser cutting as a source of molten droplets for additivemanufacturing: a new recycling technique. Mater Des 125:76–84

    Article  Google Scholar 

  31. Fang X, Du J, Wei Z, Wang X, He P, Bai H, Wang B, Chen J, Geng R, Lu B (2016) Study on metal deposit in the fused-coating based additive manufacturing. Procedia CIRP 55:115–121

    Google Scholar 

  32. Ghazanfari A, Li W, Leu MC, Hilmas GE (2016) A novel extrusion-based additivemanufacturing process for ceramic parts. Austin, TX, USA, pp 1509–1529

    Google Scholar 

  33. Ghazanfari A, Li W, Leu MC, Watts JL, Hilmas GE (2017) Additive manufacturing and mechanical characterization of high densityfully stabilized zirconia. Ceram Int 43:6082–6088

    Article  Google Scholar 

  34. Hu Y, Li Y, Cong W, Zhi L, Guo Z (2017) Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables. Ceram Int 43:7768–7775

    Article  Google Scholar 

  35. Kumar BM, Panaskar NJ, Sharma A (2014) A fundamental investigation on rotatingtool cold expansion: numerical and experimental perspectives. Int J Adv Manuf Technol 73(5–8):1189–1200

    Google Scholar 

  36. Panaskar NJ, Sharma A (2014) Surfacemodification and nanocomposite layering of fastener-hole through friction-stir processing. Mater Manuf Process 29(6):726–732

    Article  Google Scholar 

  37. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng, A 341:307–310

    Article  Google Scholar 

  38. Gandra J, Miranda R, Vilaca P, Velhinho A, PamiesT J (2011) Functionally gradedmaterials produced by friction stir processing. J Mater Process Technol 211:1659–1668

    Article  Google Scholar 

  39. Miranda RM, Santos TG, Gandra J, Lopes N, Silva RJCC (2013) Reinforcement strategies for producing functionally graded materials by friction stir processing inaluminium alloys. J Mater Process Technol 213:1609–1615

    Article  Google Scholar 

  40. Mojtaba S, Farnoush H, Mohandesi JA (2014) Fabrication and characterization of functionally graded Al–SiCnanocompositebyusing a novel multistep friction stir processing. Mater Des 63:419–426

    Article  Google Scholar 

  41. Yao S, Wang T (2016) Improved surface of additive manufactured products by coating. J Manuf Process 24:212–216

    Article  Google Scholar 

  42. Sharmaa A, Vijendra B, Ito K, Kohama K, Ramjia M, Sai BV (2017) A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing. J Manuf Process 26:122–130

    Article  Google Scholar 

  43. Leitão, C, Galvão I, Leal RM, Rodrigues DM (2012) Determination of local constitutive properties of aluminum friction stir welds using digital image correlation Mater Des 33:69–74

    Google Scholar 

  44. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additivemanufacturing and rapid prototyping. CIRP Ann-Manuf Technol 47(2):525–540

    Google Scholar 

  45. Mohri N, Takezawa H, Furutani K, Ito Y, Sata T (2000) A newprocess of additive and removal machining by EDM with a thinelectrode. CIRP Ann-Manuf Technol 49(1):123–126

    Google Scholar 

  46. Zhang H, Xu J, Wang G (2003) Fundamental study on plasma deposition manufacturing. Surf Coati Technol 171(1):112–118

    Google Scholar 

  47. Janaki Ram GD, Robinson C, Yang Y, Stucker BE (2007) Use of ultrasonic consolidation for fabrication of multi-materialstructures. Rapid Prototyping J 13(4):226–235

    Google Scholar 

  48. Yves-Christian H, Jan W, Wilhelm M, Konrad W, Reinhart P (2010) Net shaped high performance oxide ceramic parts by selectivelaser melting. Phys Procedia 5:587–594

    Article  Google Scholar 

  49. Karunakaran KP, Suryakumar S, Pushpa V, Akula S (2010) Lowcost integration of additive and subtractive processes for hybrid layeredmanufacturing. Robot Comput-Integr Manuf 26(5):490–499

    Google Scholar 

  50. Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Google Scholar 

  51. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fibrereinforced composites for fused deposition modeling. Mater Sci Eng, A 301(2):125–130

    Article  Google Scholar 

  52. Karalekas D, Antoniou K (2004) Composite rapid prototyping: overcoming the drawback of poor mechanical properties. J Mater Process Technol 153:2526–2530

    Google Scholar 

  53. Kumar S, Kruth JP (2010) Composites by rapid prototypingtechnology. Mater Des 31(2):850–856

    Google Scholar 

  54. Cerneels J, Voet A, Ivens J, Kruth JP (2013) Additive manufacturing of thermoplastic composites. Composites Week@ Leuven 1–7

    Google Scholar 

  55. Zhang Y, De Backer W, Harik R, Bernard A (2016) Build orientation determination for multi-material deposition additive manufacturing with continuous fibers. Procedia CIRP 50:414–419

    Article  Google Scholar 

  56. Gu DD et al (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Google Scholar 

  57. Hofmann DC et al (2014) Compositionally graded metals: a newfrontier of additive manufacturing. J Mater Res 29(17):1899–1910

    Google Scholar 

  58. Williams SW et al (2016) Wire + Arc additive manufacturing. Mater Sci Technol

    Google Scholar 

  59. Wanjara P, Brochu M, Jahazi M (2007) Electron beam freeformingofstainless steel using solid wire feed. Mater Des 28(8):2278–2286

    Google Scholar 

  60. Ding J et al (2014) A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol 70(1–4):227–236

    Google Scholar 

  61. Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol 115(3):271–283

    Google Scholar 

  62. Huang C, Orme M (1997) Phase change manipulation for droplet-based solid freeform fabrication. Trans AsmeSerie C J Heat Transf 119(4):818–823

    Article  Google Scholar 

  63. Sames WJ et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 1–46

    Google Scholar 

  64. Fang X, Du J, Wei Z, He P, Wang B, Geng R, Chen J, Lu B (2016) Experimental and analytical study offused-coating based metal additive manufacturing. In: Annual international solid freeform fabrication symposium

    Google Scholar 

  65. Brøtana O, Berg Å, Sørby K (2016) Additive manufacturing for enhanced performance of molds. Procedia CIRP 54:186–190

    Article  Google Scholar 

  66. Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, Mcintosh D (2014) Hybrid processes in manufacturing. CIRP Ann—Manuf Technol 63:561–583

    Google Scholar 

  67. Panjan P, Urankar I, Navinšek B, Terčelj M, Turk, R, Čekada, M, Leskovšek V (2002) Improvement of hot forging tools with duplex treatment. Surf Coat Tech (151–152) 505–509

    Google Scholar 

  68. Lawrence J, Waugh DG (2015) Laser surface engineering: processes and applications. Woodhead Publishing Series in electronic and optical materials, p 65

    Google Scholar 

  69. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally gradedmaterial: an overview. In: Proceedings of the world congress on engineering, p 3

    Google Scholar 

  70. Shah K, ul Haq I, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametricstudy of development of inconel-steel functionally graded materials bylaser direct metal deposition. Mater Des 54:531–538

    Google Scholar 

  71. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additivemanufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164

    Google Scholar 

  72. Fallah V, Corbin SF, Khajepour A (2010) Process optimization of Ti-Nballoycoatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders. J Mater Process Tech 2081–2087

    Google Scholar 

  73. Vilar R (2014) Laser powder deposition, comprehensive materials processing, p 10

    Google Scholar 

  74. Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T (2015) Micro structural characterization and mechanical performance of hot worktool steel processed by selective laser melting. Metall Mater Transac B 46

    Google Scholar 

  75. Klocke F, Arntz K, Teli M, Winands K, Stella Oliari MW (2017) State-of-the-art laser additive manufacturing for hot-work tool steels. Procedia CIRP 63:58–63

    Article  Google Scholar 

  76. Silva RJ, Barbosa GF, Carvalho J (2015) Additive manufacturing of metal parts by welding. IFAC 48–3:2318–2322

    Google Scholar 

  77. Sansoucy E, Marcoux P, Ajdelsztajn L, Jodoin B (2008) Properties of SiC-reinforcedaluminium alloy coatings produced by the cold gas dynamic spraying process. Surf Coat Technol 202:3988–3996

    Google Scholar 

  78. Irissou E, Legoux JG, Arsenault B, Moreau C (2007) Investigation of Al–Al2O3 coldspray coating formation and properties. J Therm Spray Technol 16:661–668

    Article  Google Scholar 

  79. Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11:542–550

    Article  Google Scholar 

  80. Wang X, Feng F, Klecka MA, Mordasky MD, Garofano JK, El-Wardany T, Nardi A, Champagne VK (2015) Characterization and modeling of the bonding process in cold spray additive manufacturing. Addit Manuf 8:149–162

    Google Scholar 

  81. Taylor JS (2015) Physical processes linking input parametrs and surfacemorphology in additive manufacturing. Achieving precision tolerances in additive manufacturing. In: ASPE 2015 spring topical meeting 2015. ASPE

    Google Scholar 

  82. Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, Bültmann J (2011) Highpower, selective laser melting (HP SLM) of aluminium parts. Phys Procedia 12A:271–278

    Google Scholar 

  83. Martina F, Mehnen J, Williams SW, Colegrove P, Wang F (2012) Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol 212:1377–1386

    Google Scholar 

  84. Rangaswamy P, Griffith ML, Prime MB, Holden TM, Rogge RB, Edwards JM et al (2005) Residual stresses in LENS components using neutron diffraction and contourmethod. Mater Sci Eng A 399:72–83

    Article  Google Scholar 

  85. Unocic RR, DuPont JN (2004) Process efficiency measurements in the laser engineered netshaping process. Metal Mater Trans B 35:143–152

    Article  Google Scholar 

  86. Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol l81:1465–1481

    Google Scholar 

  87. Dupont JN, Marder AR (1995) Thermal efficiency of arc welding processes. Weld J 406–416

    Google Scholar 

  88. Muller P, Mognol P, Hascoet J-Y (2013) Modelling and control of a direct laser powderdeposition process for functionally graded materials (FGM) parts manufacturing. J Mater Process Technol 213:685–692

    Google Scholar 

  89. Qu HP, Li P, Zhang SQ, Li A, Wang HM (2010) Microstructure and mechanical propertyof laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater Des 31:574–582

    Google Scholar 

  90. Abe T, Sasahara H (2016) Dissimilar metal deposition with a stainless steel and nickel-basedalloy using wire and arc-based additive manufacturing. Precis Eng 45:387–395

    Article  Google Scholar 

  91. Froes FHD, Eylon D, Bomberger H (eds) (1985) Titanium technology: present status and future trends. TDA, Dayton, OH

    Google Scholar 

  92. Francis FHS, Yau T-L, Weidenger HG (1996) Chapter 8, Materials science and technology—structure and properties of nonferrous alloys. In: Matucha KH (ed) VCH, Weinheim, FRG, p 401

    Google Scholar 

  93. Froes FHS (2000) Chapters 3.3.5a–3.3.5e encyclopaedia of materials science and engineering. In: subject Bridenbaugh P (ed) Elsevier, Oxford, UK

    Google Scholar 

  94. Froes FHS (2000) Chapter 8 of the handbook of advanced materials. In: Weasel JK (ed.) McGraw-Hill Inc., New York, NY

    Google Scholar 

  95. Froes FHS (2000) In: Ellis J (ed) Handbook of chemical industry economics, inorganic. Wiley, New York, NY

    Google Scholar 

  96. Boyer RR, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM Int., Materials Park, OH

    Google Scholar 

  97. Froes FH, Eylon D (1990) Powder metallurgy of titanium alloys. Int Mater Rev 35:162–184

    Google Scholar 

  98. Froes FH, Suryanarayana C (1993) Powder processing of titanium alloys. In: Bose A, German RM, Lawley A (eds) Reviews in particulate materials, vol 1. MPIF, Princeton, NJ, p 223

    Google Scholar 

  99. Froes FH (Sam) Powder metallurgy of titanium alloys. In: Chang I, Zhao Y (eds) (2013) Advances in powder metallurgy. Wood head Publishing, Philadelphia, USA, p 202

    Google Scholar 

  100. Froes FH, Imam MA, Fray D (eds) (2004) Cost affordable titanium. TMS, Warrendale, PA

    Google Scholar 

  101. Dutta B, Froes FHS (2017) The Additive Manufacturing (AM) of titanium alloys. Metal Powder Rep 72(2):96–116

    Google Scholar 

  102. Yin B, Ma H, Wang J, Fang K, Zhao H, Liu Y (2017) Effect of CaF2 addition on macro/microstructures and mechanicalproperties of wire and arc additive manufactured Ti-6Al-4V components. Mater Lett 190:64–66

    Google Scholar 

  103. Threadgill PL, Russell MJ (2007) Friction welding of near net shape performs in Ti-6Al-4V. In: 11th world conference on titanium (Ti-2007), (JIMIC-5). Kyoto, Japan, pp 3–7

    Google Scholar 

  104. Karl D, Sarat S (2016) Selective laser melting of duplex stainless steel powders: aninvestigation. Mater Manuf Process 31:1543–1555

    Google Scholar 

  105. Collins PC, Banerjee R, Banerjee S, Fraser HL (2003) Laser deposition of compositionallygraded titanium-vanadium and titanium-molybdenum alloys. Mater Sci Eng A 352:118–128

    Article  Google Scholar 

  106. Zhang BC, Liao BC, Coddet C (2013) Selective laser melting commerciallypure Ti under vacuum. Vacuum 95:25–29

    Article  Google Scholar 

  107. Wu GQ, Shi CL, Sha W, Sha AX, Jiang HR (2013) Microstructure and high cyclefatigue fracture surface of a Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy. Mater Sci Eng A 575:111–118

    Article  Google Scholar 

  108. Bian L, Thompson SM, Shamsaei N (2015) Mechanical properties and micro structuralfeatures of direct laser deposited Ti-6Al-4V. JOM 67:629–638

    Article  Google Scholar 

  109. Guo P, Zou B, Huang CZ, Gao HB (2017) Study on microstructure, mechanicalproperties and machinability of efficiently additive manufactured AISI 316Lstainless steel by high-power direct laser deposition. J Mater Process Technol 240:12–22

    Article  Google Scholar 

  110. Li KB, Li D, Liu DY, Pei GY, Sun L (2015) Microstructure evolution and mechanicalproperties of multiple-layer laser cladding coating of 308L stainless steel. Appl Surf Sci 340:143–150

    Article  Google Scholar 

  111. El Kadiri H, Wang L, Horstemeyer MF, Yassar RS, Berry JT, Felicelli S et al (2008) Phase transformations in low-alloy steel laser deposits. Mater Sci Eng A 494:10–20

    Article  Google Scholar 

  112. Xue Y, Pascu A, Horstemeyer MF, Wang L, Wang PT (2010) Micro porosityeffects on cyclic plasticity and fatigue of LENS-processed steel. Acta Mater 58:4029–4038

    Google Scholar 

  113. Mickovski JK, Lazarev IJ, Lazarev J (2010) Microstructure case study of LENS processedcylinder from AISI H13 steel. J Technol Plast 35:61–74

    Google Scholar 

  114. Wu D, Liang X, Li Q, Jiang L (2010) Laser rapid manufacturing of stainless steel 316 L/Inconel718 functionally graded materials: microstructure evolutionandmechanical properties. Int J Opt 1–5

    Google Scholar 

  115. Ganesh P, Kaul R, Sasikala G, Kumar H, Venugopal S, Tiwari P et al (2014) Fatiguecrack propagation and fracture toughness of laser rapid manufacturedstructures of AISI 316L stainless steel. Metallogr Microstruct Anal 3:36–45

    Article  Google Scholar 

  116. Blackwell PL (2005) The mechanical and microstructural characteristics of laserdepositedIN718. J Mater Process Technol 170:240–246

    Article  Google Scholar 

  117. Paul CP, Ganesh P, Mishra SK, Bhargava P, Negi JA, Nath K (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt LaserTechnol 39:800–805

    Google Scholar 

  118. Dinda GP, Dasgupta K, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 super alloy: microstructural evolution and thermal stability. Mater Sci Eng A 509:98–104

    Article  Google Scholar 

  119. Ganesh P, Kaul R, Paul CP, Tiwari P, Rai SK, Prasad RC et al (2010) Fatigue andfracture toughness characteristics of laser rapid manufactured inconel 625 structures. Mater Sci Eng A 527:7490–7497

    Article  Google Scholar 

  120. Ram GDJ, Stucker BE (2008) A feasibility study of LENS; deposition of CoCrMocoating on a titanium substrate. J Manuf Sci Eng 130:024503–024505

    Article  Google Scholar 

  121. Janaki Ram GD, Esplin CK, Stucker BE (2008) Microstructure and wear propertiesofLENS deposited medical grade CoCrMo. J Mater Sci Mater Med 19:2105–2111

    Article  Google Scholar 

  122. Liu Y, Yang Y, Mai S, Wang D, Song C (2015) Investigation into spatter behaviorduring selective laser melting of 5AISI6 316L stainless steel powder. Mater Des 87:797–806

    Article  Google Scholar 

  123. Sander J, Hufenbach J, Giebeler L, Wendrock H, Kühn U, Eckert J (2016) Microstructureand properties of FeCrMoVC tool steel produced by selective lasermelting. Mater Des 89:335–341

    Article  Google Scholar 

  124. Tolosa I, Garciandía F, Zubiri F, Zapirain F, Esnaola A (2010) Study of mechanicalproperties of AISI 316 stainless steel processed by selective laser melting, following different manufacturing strategies. Int J Adv Manuf Technol 51:639–647

    Article  Google Scholar 

  125. Wang Q, Zhang S, Zhang CH, Wu C, Wang J, Chen J, Sun Z (2017) Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing. Vacuum 141:68–81

    Article  Google Scholar 

  126. Thompson A, Maskery I, Leach RK (2016) X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol 27:072001 (pp 17)

    Google Scholar 

  127. Mankovich NJ, Cheeseman AM, Stoker NG (1990) The display of three-dimensional anatomy with stereo lithographic models. J Digit Imaging 3:200–203

    Article  Google Scholar 

  128. Hirsch M, Patel R, Li W, Guan G, Leach RK, Sharples SD, Clare AT (2017) Assessing the capability of in-situ nondestructive analysis during layer based additive manufacture. Addit Manuf 13:135–142

    Google Scholar 

  129. Townsend A, Senin N, Blunt L, Leach RK, Taylor JS (2016) Surface texture metrology for metal additive manufacturing: a review. Precis Eng 46:34–47

    Article  Google Scholar 

  130. Du J, Wang X, Bai H, Zhao G, Zhang Y (2017) Numerical analysis of fused-coating metal additive manufacturing. Int J Therm Sci 114:342–351

    Google Scholar 

  131. Atzeni E, Salmi A (2015) Evaluation of additive manufacturing (AM) techniques for the production of metal–ceramic dental restorations. J Manuf Process 20:40–45

    Article  Google Scholar 

  132. Rao KP, Damodarama R, Khalid Rafia H, Janaki Rama GD, Reddy GM, Nagalakshmic R (2012) Friction surfaced Stellite6 coatings. Mater Charact 70:111–116

    Google Scholar 

  133. Norhafzan B, Aqida SN, Chikarakara E, Brabazon D (2016) Surface modification of AISI H13 tool steel by laser cladding with NiTipowder. Appl Phys A 122

    Google Scholar 

  134. Li WY, Jiang RR, Huang CJ, Zhang ZH, Feng Y (2015) Effect of cold sprayed Al coating on mechanical property and corrosionbehavior of friction stir welded AA2024-T351 joint. Mater Des 65:757–761

    Article  Google Scholar 

  135. Spencer K, Zhang MX (2009) Heat treatment of cold spray coatings to form protective intermetallic layers. Scripta Mater 6:144–147

    Google Scholar 

  136. Rech S, Trentin A, Vezzu S, Legoux JG, Irissou E, Guagliano M (2010) Influence of preheatedAl 6061 substrate temperature on the residual stresses of multipassAlcoatings deposited by cold spray. J Therm Spray Technol 20:243–251

    Article  Google Scholar 

  137. Kaczmarek L, Adamczyk-Cieślak B, Mizera J, Stegliński M, Kyzioł K, Miedzińska D, Kołodziejczyk L, Szymański W, Kozanecki M (2015) Influence of chemical composition of Ti/TiC/a-C: H coatings deposited on 7075 aluminum alloy on their selected mechanical properties. Surf Coat Technol 261:304–310

    Article  Google Scholar 

  138. Huang C, Li W, Planche MP, Liao H, Montavon G (2017) In-situ formation of Ni-Al intermetallics-coated graphite/Al composite in a cold-sprayed coating and its high temperature tribologicalbehaviours. J Mater Sci Technol 33:507–515

    Article  Google Scholar 

  139. Gorunov AI, Gilmutdinov AKh (2017) Investigation of coatings of austenitic steels produced by supersonic laserdeposition. Opt Laser Technol 88:157–160

    Article  Google Scholar 

  140. Taylor JS (2015) Surface characteristics of additive-maufactured components. In: 15th international conference on metrology and properties of engineering surfaces

    Google Scholar 

  141. Chen C, Xie Y, Verdy C, Liao H, Deng S (2017) Modeling of coating thickness distribution and its application in offline programming software. Surf Coat Technol 318:315–325

    Article  Google Scholar 

  142. Huang C, Li W, Zhang Z, Fub M, Planche M, Liao H, Montavon G (2016) Modification of a cold sprayed SiCp/Al5056 composite coating by friction stirprocessing. Surf Coat Technol 296:69–75

    Article  Google Scholar 

  143. Wernick S, Pinner R, Draper R (1972) Surface treatment and finishing of aluminiumand its alloys, 1st edn., vols 1–2. Pergamon Books, Oxford, New York

    Google Scholar 

  144. Yang JYF (2009) Surface modification of aluminum alloy products for micro-arc oxidation processes

    Google Scholar 

  145. Xiang N, Song R, Zhuang J, Song R, Lu X, Su X (2016) Effects of current density onmicrostructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy. Trans Nonferrous Metals Soc China 26:806–813

    Article  Google Scholar 

  146. Rama Krishna L, Somaraju KRC, Sundararajan G (2003) The tribological performance of ultra-hard ceramic composite coatings obtained through microarcoxidation. Surf Coat Technol 163–164, 484–490

    Google Scholar 

  147. You Q, Yu H, Wang H, Pan Y, Chen C (2014) Effect of current density on the microstructureand corrosion resistance of microarc oxidized ZK60 magnesium alloy. Biointerphases 9:31009

    Google Scholar 

  148. Jayaraj RK, Malarvizhi S, Balasubramanian V (2017) Optimizingthe micro-arc oxidation (mao) parameters to attaincoatings with minimum porosity and maximum hardness on thefriction stir welded AA6061 aluminum alloy welds. Defence Technol 13:111–117

    Article  Google Scholar 

  149. Pohl M, Storz O, Glogowski T (2007) Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater Charact 58(1):65–71

    Google Scholar 

  150. Karahan T, Emre HE, Tümer M, Kaçar R (2014) Strengthening of AISI 2205 duplexstainless steel by strain ageing. Mater Des 55:250–256

    Article  Google Scholar 

  151. Cronemberger MER, Nakamatsu S, Della Rovere CA, Kuri SE, Mariano NA (2015) Effectof cooling rate on the corrosion behaviour of as-cast SAF 2205 duplex stainless steelafter solution annealing treatment. Mater Res 18:138–142

    Article  Google Scholar 

  152. Sá Brito VRS, Bastos IN, Costa HRM (2012) Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel. Mater Des 41:282–288

    Article  Google Scholar 

  153. Wang SL, Cheng JC, Yi SH, Ke LM (2014) Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying. T Nonferr Metal Soc 24(1):146–151

    Article  Google Scholar 

  154. Liang J, Srinivasan PB, Blawert C, Dietzel W (2009) Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros Sci 51(10):2483–2492

    Article  Google Scholar 

  155. Zhang P, Liu Z (2016) Physical-mechanical and electrochemical corrosion behaviours of additively manufactured Cr-Ni-based stainless steel formed by laser cladding. Mater Des 100:254–262

    Article  Google Scholar 

  156. Pajukoski H, Nakki J, Thieme S, Tuominen J, Nowotny SP, Vuoristo P (2016) High performance corrosion resistant coatings by novel coaxial cold- and hot-wire laser cladding methods. J Laser Appl 28(1):012011–1–012011–12

    Google Scholar 

  157. Rezaei S, Wulfinghoff S, Reese S (2017) Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements. Int J Solids Struct 121:62–74

    Article  Google Scholar 

  158. Holmberg K, Laukkanen A, Ronkainen H, Wallin K (2013) Finite element analysis of coating adhesion failure in pre-existing crack field. Tribol Mater Surf Interfaces 742–751

    Google Scholar 

  159. Kurt A, Uygurb I, Cete E (2011) Surface modification of aluminum by friction stir processing. J Mater Process Technol 211:313–317

    Article  Google Scholar 

  160. Zhang Y, Sahasrabudhe H, Bandyopadhyay A (2015)Additive manufacturing of Ti-Si-N ceramic coatings on titanium. Appl Surf Sci 346:428–437

    Google Scholar 

  161. Chen C, Xie Y, Verdy C, Liao H, Ren Z, Deng S (2017) Numerical investigation of transient coating build-up and heattransfer in cold spray. Surf Coat Technol

    Google Scholar 

  162. Bobbio LD, Otis RA, Borgonia JP, Dillon RP, Shapiro AA, Liu Z, Beese AM (2017) Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: experimental characterization and thermodynamic calculations. Acta Mater 127:133–142

    Article  Google Scholar 

  163. Fang X, Du J, Wei Z, He P, Bai H, Wang X, Lu B (2017) An investigation on effects of process parameters in fused-coatingbased metal additive manufacturing. J Manuf Process (Press)

    Google Scholar 

  164. Arne R, Karina G, Matthias W, Florian B, Werner T (2016) Comparison of microstructureand mechanical properties of 316 L austenitic steel processed byselective laser melting with hot-isostatic pressed and cast material. Mater Sci Eng A 678:365–376

    Article  Google Scholar 

  165. Zhang Q, Chen J, Tan, H, Lin X, Huang W (2016) Microstructure evolution and mechanical properties of Laser additive manufactured Ti−5Al−2Sn−2Zr−4Mo−4Cr alloy. Trans Nonferrous Met Soc China 26:2058–2066

    Google Scholar 

  166. Renken V, Albinger S, Goch G, Neef A, Emmelmann C (2017) Development of an adaptive, self-learning control concept for an additive manufacturing process. CIRP J Manuf Sci Technol (Press)

    Google Scholar 

  167. Wang ZQ, Palmer TA, Beese AM (2016) Effect of processing parameterson microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235

    Article  Google Scholar 

  168. Patil N, Pal D, Anam M, Gong H, Gu H, Dilip S et al (2014) Predictive modelingcapabilities for dimensional accuracy and surface finish in metal laser melting based additive manufacturing. Dimensional accuracy and surface finish in additive manufacturing. In: ASPE 2014 spring topical meeting. ASPE

    Google Scholar 

  169. Gong X, Lydon J, Cooper K, Chou K (2014b) Beam speed effects on Ti-6Al-4V microstructures in electron beam additive manufacturing. J Mater Res 29(17):1951–1959

    Google Scholar 

  170. Murr L, Gaytan S, Medina F, Martinez E, Hernandez D, Martinez L, Lopez M, Wicker R, Collins S (2009a) Effect of build parameters and build geometries on residual microstructuresand mechanical properties of Ti-6Al-4V components built by electron beam melting (EBM). In: Process of the solid freeform fabrication symposium. Austin, TX

    Google Scholar 

  171. Puebla K, Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB (2012) Effect of meltscan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Mater Sci Appl 259(3)

    Google Scholar 

  172. Wang X, Gong X, Chou K (2015) Scanning speed effect on mechanical properties of Ti- 6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manuf 1:287–295

    Article  Google Scholar 

  173. Romano J, Ladani L, Sadowski M (2015) Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manuf 1:238–250

    Article  Google Scholar 

  174. Oyelola O, Crawforth P, Saoubi RM, Clare AT (2016) Machining of additively manufactured parts: implications for surface integrity. Procedia CIRP 45:119–122

    Article  Google Scholar 

  175. Mishra RS, Ma ZY (2005) Friction stirs welding and processing. Mater Sci Eng R 50:1–78

    Article  Google Scholar 

  176. Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of processparameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67:2743–2751

    Article  Google Scholar 

  177. Barari A, Jamiolahmadi S (2014) Estimation of surface roughness of additivemanufacturing parts using finite difference method. Dimensional accuracy and surface finish in additive manufacturing. In: ASPE 2014 spring topical meeting. ASPE

    Google Scholar 

  178. Poprawe R (2011) Tailored Light 2: laser application technology 2011

    Google Scholar 

  179. Gibson I, Rosen DW, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn.

    Google Scholar 

  180. Kaierle S, Barroi A, Noelke C, Hermsdorf J, Overmeyer L, Haferkamp H (2012) Review on laser deposition welding: from micro to macro. Phys Procedia 39:336–345

    Article  Google Scholar 

  181. Lorenz KA, Jones JB, Wimpenny DI, Jackson MR (2015) A review of hybrid manufacturing. In: Solid freeform fabrication conference proceedings, p 53

    Google Scholar 

  182. Huang C, Li W, Feng Y, Xie Y, Planche MP, Liao H, Montavon G (2017) Micro structural evolution and mechanical properties enhancement of a cold-sprayed Cu-Zn alloy coating with friction stir processing. Mater Charact 125:76–82

    Google Scholar 

  183. Liu F, Ji Y, Meng Q, Li Z (2016) Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31B. Vacuum 133:31–37

    Article  Google Scholar 

  184. Xiong Y, Qiu Z, Li R, Yuan T, Wu H, Liu J (2015) Preparation of ultra-fine grain Ni−Al−WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing. Trans Nonferrous Met Soc China 25:3685–3693

    Article  Google Scholar 

  185. Chew Y, Pang JHL, Bi G, Song B (2017) Effects of laser cladding on fatigue performance of AISI 4340 steel in the as-clad and machine treated conditions. J Mater Process Technol 243:246–257

    Article  Google Scholar 

  186. Serres N, Tidu D, Sankare S, Hlawka F (2011) Environmental comparison of MESO-CLAD process and conventional machining implementing life cycle assessment. J Clean Prod 19:1117–1124

    Article  Google Scholar 

  187. Salonitis K, D’Alvise L, Schoinochoritis B, Chantzis D (2015) Additivemanufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol 85:2401–2411

    Article  Google Scholar 

  188. Wang M, Xu B, Dong S, Zhang J, Wei S (2013a) Experimental investigations ofcutting parameters influence on cutting forces in turning of Fe-based amorphous overlay for remanufacture. Int J Adv Manuf Technol 65:735–743

    Article  Google Scholar 

  189. Wang M, Xu B, Zhang J, Dong S, Wei S (2013b) Experimental observations onsurface roughness, chip morphology, and tool wear behaviour in machining Febasedamorphous alloy overlay for remanufacture. Int J Adv Manuf Technol 67:1537–1548

    Article  Google Scholar 

  190. Nieslony P, Cichosz P, Krolczyk G, Legutko S, Smyczek D, Kolodziej M (2016) Experimental studies of the cutting force and surface morphology of explosivelyclad Tie steel plates. Measurement 78:129–137

    Article  Google Scholar 

  191. Nieslony P, Krolczyk G, Zak K, Maruda R, Legutko S (2017) Comparativeassessment of the mechanical and electromagnetic surfaces of explosively cladTiesteel plates after drilling process. Precis Eng 47:104–110

    Article  Google Scholar 

  192. Böß V, Denkena B, Wesling V, Kaierle S, Rust F, Nespor D, Rottwinkel B (2016) Repairing parts from nickel base material alloy by laser cladding and ball endmilling. Prod Eng 10:433–441

    Article  Google Scholar 

  193. Zhang P, Liu Z (2017) On sustainable manufacturing of Cr-Ni alloy coatings by laser claddingand high-efficiency turning process chain and consequent corrosionresistance. J Cleaner Prod 161:676–687

    Google Scholar 

  194. Zahmatkesh B, Enayati MH (2010) A novel approach for development of surface nano composite by friction stir processing. Mater Sci Eng A 527:6734–6740

    Article  Google Scholar 

  195. Triantou KI, Pantelis DI, Guipont V, Jeandin M (2015) Microstructure and tribological behavior of copper and compositecopper+alumina cold sprayed coatings for various alumina contents. Wear 336:96–107

    Article  Google Scholar 

  196. Klopstock H, Neelands AR (1994) An improved method of joining and welding metals. Patent specifiction, No. 572789, U.K

    Google Scholar 

  197. Rafi HK, Balasubramaniam K, Phanikumar G, Rao KP, (2011) Thermal profilingusing infrared thermography in friction surfacing. Metall Mater Trans A 42:3425–3429

    Google Scholar 

  198. Bedford GM, Vitanov VI, Voutchkov II (2001) On the thermo-mechanical events during frictionsurfacing of high speed steels. Surf Coat Technol 141:34–39

    Google Scholar 

  199. Gandra J, Krohnband H, Mirandac RM (2014) Friction surfacing-a review. J Mater Process Technol 214(5):1062–1093

    Google Scholar 

  200. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng 50(1–2):1–78

    Google Scholar 

  201. Chandrasekaran M, Batchelor AW, Jana S (1998a) Study of theinterfacial phenomena during friction surfacing of mild steel with tool steel and inconel. J Mater Sci 33:2709–2717

    Article  Google Scholar 

  202. Vitanov VI, VoutchkovII BGM (2000) Decisionsupport system to optimize the Frictec (frictionsurfacing) process. J Mater Process Technol 107:236–242

    Article  Google Scholar 

  203. Batchelor AW, Jana S, Koh CP, Tan CS (1996) The effect ofmetal type and multi-layering on friction surfacing. J Mater Process Technol 57:172–181

    Google Scholar 

  204. Reddy GM, Rao KS, Mohandas T (2009) Friction surfacing: novel technique for metal matrix composite coating on aluminium–silicon alloy. Surf Eng 25:25–30

    Article  Google Scholar 

  205. Reddy GM, Prasad KS, Rao KS, Mohandas T (2011) Friction surfacing of titanium alloy with aluminium metal matrix composite. Surf Eng 27(2):92–98

    Google Scholar 

  206. Chandrasekaran M, Batchelor AW, Jana S (1997) Friction surfacing of metal coatings on steel and aluminum substrate. J Mater Process Technol 72:446–452

    Article  Google Scholar 

  207. Tokisue H, Katoh K, Asahina T, Usiyama T (2006) Mechanical properties of 5052/2017 dissimilar aluminum alloys deposit by friction surfacing. Mater Trans 47(3):874–882

    Google Scholar 

  208. Madhusudhan RG, Srinivasa RK, Mohandas T (2009) Friction surfacing: novel technique for metal matrix composite coating on aluminum-silicon alloy. Surf Eng 25:25–30

    Article  Google Scholar 

  209. Batchelor AW, Jana S, Koh CP, Tan CS (1996) The effect of metal type and multilayering on friction surfacing. J Mater Process Technol 57:172–181

    Google Scholar 

  210. Nixon GS, Mohanty BS, Barnabas SG, Manikandan S (2013) Factors affecting friction coating on stainless steel 304. Int J Sci Res Publ 3:3

    Google Scholar 

  211. Gandra J, Pereira D, Miranda RM, Silva RJC, Vilaça P (2013) Deposition of AA6082-T6 over AA2024-T3 by friction surfacing—mechanical and wear characterization. Surf Coat Technol 223:32–40

    Article  Google Scholar 

  212. Janakiraman S, Bhat KU (2016) Formation of composite surface during friction surfacing of steel with aluminium. Adv Tribol 1–5

    Google Scholar 

  213. Rafi HK, Janaki Ram GD, Phanikumar G, Rao KP (2011) Microstructural evolution during friction surfacing of tool steel H13. Mater Des 32:82–87

    Article  Google Scholar 

  214. Raoa KP, Veera SA, Rafi HK, Libin MN, Balasubramaniam K (2012) Tool steel and copper coatings by friction surfacing—a thermography study. J Mater Process Technol 212:402–407

    Article  Google Scholar 

  215. Raoa KP, Sankar A, Rafi HK, Janaki Ram GD, Reddy GM (2013) Friction surfacing on nonferrous substrates: a feasibility study. Int J Adv Manuf Technol 65:755–762

    Google Scholar 

  216. Saravanakumar S, Gopalakrishnan S, Dinaharan I, Kalaiselvan K (2017) Assessment of microstructure and wear behavior of aluminum nitratereinforced surface composite layers synthesized using friction stirprocessing on copper substrate. Surf Coat Technol 322:51–58

    Article  Google Scholar 

  217. Puli R, Nandha Kumar E, Janaki Ram GD (2011) Characterization of friction surfaced martensitic stainless steel (AISI 410) coatings. Trans IIM 64(1 & 2):41–45

    Google Scholar 

  218. Puli R, Janaki Ram GD (2012a) Corrosion performance of AISI 316L friction surfaced coatings. Corros Sci 62:95–103

    Article  Google Scholar 

  219. Puli R, Janaki Ram GD (2012b) Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel. Surf Coat Technol 207:310–318

    Article  Google Scholar 

  220. Nakama D, Katoh K, Tokisue H, (2008) Some characteristics of AZ31/AZ91 dissimilar magnesium alloy deposit by friction surfacing. Mater Trans 49(5):1137–1141

    Google Scholar 

  221. Gopikrishna N, Sammaiah P, Kumar N S (2015) Effect of rotational speed on coating thickness during zinc deposition on copper by friction surfacing. Int J Eng Res Technol (IJERT) 4(01)

    Google Scholar 

  222. Khalid Rafi H, Janaki Ram GD, Phanikumar G, Rao KP (2010) Microstructure and properties of friction surfacedstainless steel and tool steel coatings. Mater Sci Forum 638–642:864–869

    Article  Google Scholar 

  223. Barnabas S, Anantharam G, Shyamsundar V, Aravind BS, Prabhu T (2014) Friction surfacing in steel 304. Am J Eng Res (AJER) 3(4): 84–97

    Google Scholar 

  224. Barnabas G (2014) Parameters optimization in friction surfacing. Chem Mater Eng 2(6):127–136

    Google Scholar 

  225. Chandrasekaran M, Batchelor AW, Jana S (1998b) Study of the interfacial phenomena duringfriction surfacing of mild steel with tool steel and inconel. J Mater Sci 33:2709–2717

    Article  Google Scholar 

  226. Miller SF (2013) New friction stir techniques for dissimilar materials processing. Manuf Lett 1:21–24

    Article  Google Scholar 

  227. Sahoo DK, Mohanty BS (2016) Performance analysis of friction surfacing between two dissimilar materials. Int J Innov Eng Technol (IJIET) 7(4)

    Google Scholar 

  228. Gandraa J, Miranda RM, Vilac P (2012) Performance analysis of friction surfacing. J Mater Process Technol 212:1676–1686

    Google Scholar 

  229. KumarM V, Satish SV (2014) Friction stir surfacing of copper. Int J Sci Res (IJSR) 3(7):1414–1418

    Google Scholar 

  230. Raju VP, Hussain MM, Govardhan D (2015) Effect of process parameters on surface roughnessof tool steel M2 deposit over low carbon steelproduced by friction surfacing. Int J Mech Prod Eng 3(9)

    Google Scholar 

  231. Danish M, Usha S, Veerapandian R (2016) Characterization of aluminum alloy coated steel made using friction surfacing method. Int J Sci Res Dev 4(3)

    Google Scholar 

  232. Rafi HK, Balasubramaniam K, Phanikumar G, Rao KP (2011) Thermal profiling using infrared thermography in friction surfacing. In: The Minerals, Metals & Materials Society and ASM International 2011, vol 42A, p 3425

    Google Scholar 

  233. Vitanov VI, Voutchkov II (2005b) Process parameters selection for friction surfacing applications using intelligent decision support. J Mater Process Technol 159:27–32

    Article  Google Scholar 

  234. Sekharbabu R, Rafi HK, Rao KP (2013) Characterization of D2 tool steel friction surfaced coatings over low carbon steel. Mater Des 50:543–550

    Article  Google Scholar 

  235. Rafi HK, Kishore Babu N, Phanikumar G, Rao KP (2013) Microstructural evolution during friction surfacing of austenitic stainless steel AISI 304 on low carbon steel. Metall Mater Trans A 44A:345

    Google Scholar 

  236. Puli R, Janaki Ram GD (2012c) Wear and corrosion performance of AISI 410 martensitic stainless steel coatings produced using friction surfacing and manual metal arc welding. Surf Coat Technol 209:1–7

    Article  Google Scholar 

  237. Raju VP, Manzoor HM (2016) Characterization of tool steel m2 friction surfaced deposit over low carbon steel. Int J Mater Sci 11(1):33–45

    Google Scholar 

  238. Raju VP, Manzoor Hussain M (2015) Experimental investigation of tool steel M2 coating on mild steel by friction surfacing. Int J Emerg Technol Adv Eng 5(4)

    Google Scholar 

  239. Chandrasekaran M, Batchelor AW, Jana S (1998c) Study of the interfacial phenomena during friction surfacing of mild steel with tool steel and inconel. J Mater Sci 33:2709–2717

    Article  Google Scholar 

  240. Beyer M, Resende A, dos Santos JF (2003) Friction surfacing for multi-sectorial applications—FRICSURF. Institute for Materials Research, GKSS ForschungszentrumGeesthacht GmbH, Technical report

    Google Scholar 

  241. Gandra J, Miranda RM, Vilaca P (2012) Performance analysis of friction surfacing. J Mater Process Technol 212:1676

    Google Scholar 

  242. Vitanov VI, Javaid N (2010) Investigation of the thermal field in microfriction surfacing. Surf Coat Technol 204:2624–2631

    Article  Google Scholar 

  243. Raju VP, Hussain MM, Govardhan D (2016) Effect of process parameters on the width of friction surfaced tool steel M2 deposit over low carbon steel. Int J Mater Sci 11:1–7

    Google Scholar 

  244. Rafi HK, Janaki Ram GD, Phanikumar G, Rao KP (2010) Friction surfaced tool steel (H13) coatings on low carbon steel: a study on the effects of process parameters on coating characteristics and integrity. Surf Coat Technol 205:232–242

    Article  Google Scholar 

  245. Ashok Kumar U, Laxminarayana P (2014) Friction surfacing process of aluminum alloys. In: 5th international & 26th all india manufacturing technology, design and research conference (AIMTDR 2014) December 12–14th. IIT Guwahati, Assam, India

    Google Scholar 

  246. Vitanov VI, Voutchkov II (2005a) Process parameters selection for friction surfacing applications using intelligence decision support. J Mater Process Technol 159:27–32

    Article  Google Scholar 

  247. Vitanov VI, Bedford GM (2001) Neurofuzzyapproach to process parameter selection for friction surfacing applications. Surf Coat Technol 140:256–262

    Article  Google Scholar 

  248. Hidekazu S, Hiroshi T (2002) Mechanical properties of friction surfaced 5052 aluminium alloy. J Jpn Inst Light Met 52(8):346–351

    Google Scholar 

  249. Takeshi S, Sinya O (1995) Deposition of hard coating layer by friction surfacing. J Jpn Weld Soc 13(3):432–437

    Google Scholar 

  250. Raju VP, Hussain MM (2015) Experimental investigation of tool steel M2 coating on mild steel by friction surfacing. Int J Emerg Technol Adv Eng 5:4

    Google Scholar 

  251. Vitanov VI, Javaid N, Stephenson DJ. (2012) Application of response surface methodology for the optimization of micro friction surfacing process. Surf Coat Technol 204(21–22):3501–3508

    Google Scholar 

  252. Mubiayi MP, Akinlabi ET. (2014) Friction stir spot welding of dissimilar materials: an overview. In: Proceedings of the world congress on engineering and computer science 2014, vol II. WCECS 2014, San Francisco, USA

    Google Scholar 

  253. Navaneethakrishnan N, Loganatha VN (2016) Investigation of alloys and analysis of coating parameter in friction surfacing: a technical review 4(1)

    Google Scholar 

  254. Sakihama H, Tokisue H, Katoh K (2003) Mechanical properties of friction surfaced 5052 aluminum alloy. Mater Trans 44(12):2688–2694

    Article  Google Scholar 

  255. Nixon GS, Barnabas SG, Edward A, Ezhilvannan R, Janani B, Sunddaram SM (2015) Microstructure analysis of SG iron friction surfacing. Aust J Basic Appl Sci 9(20):78–89

    Google Scholar 

  256. Sugandhi V (2012) Optimization of friction surfacing process parameters for AA1100 aluminum alloy coating with mild steel substrate using Response Surface Methodology (RSM) technique. Modern Appl Sci 6:2

    Google Scholar 

  257. James WJ, Slabbekoorn MA, Edgin WA, Hardin CK (1998) Correction of congenital malar hypoplasia usingstereolithography for presurgical planning. J Oral Maxillofac Surg 56(4):512–517

    Google Scholar 

  258. Van Noort R (2012) The future of dental devices is digital. Dent Mater 28(1):3–12

    Article  Google Scholar 

  259. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Google Scholar 

  260. Conner M (2010) 3-D medical printer to print body parts. EDN 55(3):9

    Google Scholar 

  261. Zhao L, Lee V, Yoo S, Dai G, Intes X (2012) The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogelscaffolds. Biomaterials 33(21):5325–5332

    Google Scholar 

  262. Budzik G, Burek J, Bazan A, Turek P (2016) Analysis of the accuracy of reconstructed two teeth models manufactured using the 3DP and FDM technologies. J Mech Eng 62(1):11–20

    Google Scholar 

  263. Spencer K, Fabijanic DM, Zhang MX (2009) The use of Al–Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf Coat Technol 204:336–344

    Article  Google Scholar 

  264. Li WY, Zhang G, Liao HL, Coddet C (2008) Characterizations of cold sprayed TiNparticle reinforced Al2319 composite coating. J Mater Process Technol 02:508–513

    Article  Google Scholar 

  265. Neef A, Seyda A, Herzo V, Emmelmann D, Schönleber C, Kogel-Hollacher M (2014) Low coherence interferometry in selective laser melting. Phys Procedia 56:82–89

    Google Scholar 

  266. Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH, Martinez E, Martinez JL, Stafford SW, Brown DK, Hoppe T, Meyers W, Lindhe U, Wicker RB (2009c) Microstructures and mechanical properties of electronbeam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater Charact 60(2):96–105

    Google Scholar 

  267. Tokisue H, Katohk K, Asahina T, Ushiyama T (2005) Structures and mechanical properties of multilayer friction surfaced aluminium alloys report of the research institute of industrial technology. Nihon University, vol 78, pp 1-13

    Google Scholar 

  268. Khalid Rafi H, JanakiRam GD, Phanikumar G, Rao KP (2010) Friction surfacing of austenitic stainless steelon low carbon steel: studies on the effects of traverse speed. In: Proceedings of the world congress on engineering, vol 2. London, U.K.

    Google Scholar 

  269. Mordfin L (1985) Nondestructive evaluation, materials and processes, Part B: processes. Marcel Dekker Inc.

    Google Scholar 

  270. Kumar R, Chattopadhyaya S, Ghosh A, Krolczyk GM, Vilaca P, Kumar R, Srivastava M, Shariq M, Triphathi R (2017) Characterization of friction surfaced coatings of AISI 316 tool over high-speed-steel substrate. Trans Famena 41(2):61–76

    Article  Google Scholar 

  271. Rivera OG, Allison PG, Jordon JB, Rodriguez OL, Brewer LN, McClelland Z, Whittington D, Francis WR, Su J, Martens RL, Hardwick N (2017) Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater Sci Eng, A 694:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Chandra Karar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karar, G.C., Kumar, R., Chattopadhyaya, S. (2021). An Analysis on the Advanced Research in Additive Manufacturing. In: Pandey, P.M., Kumar, P., Sharma, V. (eds) Advances in Production and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5519-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5519-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5518-3

  • Online ISBN: 978-981-15-5519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics