Skip to main content

Pragmatic Evaluation of the Impact of Dimensionality Reduction in the Performance of Clustering Algorithms

  • Conference paper
  • First Online:
Advances in Electrical and Computer Technologies

Abstract

With the huge volume of data available as input, modern-day statistical analysis leverages clustering techniques to limit the volume of data to be processed. These input data mainly sourced from social media channels and typically have high dimensions due to the diverse features it represents. This is normally referred to as the curse of dimensionality as it makes the clustering process highly computational intensive and less efficient. Dimensionality reduction techniques are proposed as a solution to address this issue. This paper covers an empirical analysis done on the impact of applying dimensionality reduction during the data transformation phase of the clustering process. We measured the impacts in terms of clustering quality and clustering performance for three most common clustering algorithms  k-means clustering, clustering large applications (CLARA), and agglomerative hierarchical clustering (AGNES). The clustering quality is compared by using four internal evaluation criteria, namely Silhouette index, Dunn index, Calinski-Harabasz index, and Davies-Bouldin index, and average execution time is verified as a measure of clustering performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. Wiley

    Google Scholar 

  2. Piatetsky-Shapiro G (1994) An overview of knowledge discovery in databases: recent progress and challenges. In: Rough sets, fuzzy sets and knowledge discovery, pp 1–10. https://doi.org/10.1007/978-1-4471-3238-7_1

  3. Fayyad U (2001) Knowledge discovery in databases: an overview. In: Relational data mining, pp 28–47. https://doi.org/10.1007/978-3-662-04599-2_2

  4. Cattell R (1943) The description of personality: basic traits resolved into clusters. J Abnorm Soc Psychol 38:476–506. https://doi.org/10.1037/H0054116

    Article  Google Scholar 

  5. Hartigan J, Wong M (1979) Algorithm AS 136: a k-means clustering algorithm. J Roy Stat Soc: Ser C (Appl Stat) 28(1):100–108. https://doi.org/10.2307/2346830

    Article  MATH  Google Scholar 

  6. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, vol 1, no 14, pp 281–297

    Google Scholar 

  7. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137. https://doi.org/10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  8. Forgey E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classification. Biometrics 21(3):768–769

    Google Scholar 

  9. Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. Faculty of Mathematics and Informatics, Delft

    Google Scholar 

  10. Park H, Jun C (2009) A simple and fast algorithm for K-medoids clustering. Expert Syst Appl 36(2):3336–3341. https://doi.org/10.1016/J.ESWA.2008.01.039

    Article  Google Scholar 

  11. Kaufman L, Rousseeuw P (2009) Finding groups in data: an introduction to cluster analysis. Wiley. https://doi.org/10.1002/9780470316801

  12. Lukasová A (1979) Hierarchical agglomerative clustering procedure. Pattern Recogn 11(5–6):365–381. https://doi.org/10.1016/0031-3203(79)90049-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Zepeda-Mendoza M, Resendis-Antonio O (2013) Hierarchical agglomerative clustering. In: Encyclopedia of systems biology, pp 886–887. https://doi.org/10.1007/978-1-4419-9863-7_1371

  14. Roux M (2018) A comparative study of divisive and agglomerative hierarchical clustering algorithms. J Classif 35(2):345–366. https://doi.org/10.1007/S00357-018-9259-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Pudil P, Novovičová J (1998) Novel methods for feature subset selection with respect to problem knowledge. In: Feature extraction, construction and selection, pp 101–116. https://doi.org/10.1007/978-1-4615-5725-8_7

  16. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417–441. https://doi.org/10.1037/H0071325

    Article  MATH  Google Scholar 

  17. Liou C, Huang J, Yang W (2008) Modeling word perception using the Elman network. Neurocomputing 71(16–18):3150–3157. https://doi.org/10.1016/J.NEUCOM.2008.04.030

    Article  Google Scholar 

  18. Xu R, Wunsch II D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678. https://doi.org/10.1109/TNN.2005.845141

  19. Shirkhorshidi A, Aghabozorgi S, Wah T, Herawan T (2014) Big data clustering: a review. In: The 14th international conference on computational science and its applications—ICCSA 2014. Springer International Publishing, Guimaraes, pp 707–720. https://doi.org/10.1007/978-3-319-09156-3_49

  20. Sajana T, Sheela Rani C, Narayana K (2016) A survey on clustering techniques for big data mining. Indian J Sci Technol 9(3):1–12. https://doi.org/10.17485/IJST/2016/V9I3/75971

    Article  Google Scholar 

  21. Ajin V, Kumar L (2016) Big data and clustering algorithms. In: 2016 international conference on research advances in integrated navigation systems (RAINS). IEEE Press, Bangalore, pp 101–106. https://doi.org/10.1109/rains.2016.7764405

  22. Dave M, Gianey H (2016) Different clustering algorithms for big data analytics: a review. In: 2016 international conference system modeling & advancement in research trends (SMART). IEEE Press, Moradabad, pp 328–333. https://doi.org/10.1109/sysmart.2016.7894544

  23. Lau T, King I (1998) Performance analysis of clustering algorithms for information retrieval in image databases. In: 1998 IEEE international joint conference on neural networks proceedings, IEEE world congress on computational intelligence (Cat. No. 98CH36227). IEEE Press, Anchorage, pp 932–937. https://doi.org/10.1109/ijcnn.1998.685895

  24. Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654. https://doi.org/10.1109/TPAMI.2002.1114856

    Article  Google Scholar 

  25. Wei C, Lee Y, Hsu C (2003) Empirical comparison of fast partitioning-based clustering algorithms for large data sets. Expert Syst Appl 24(4):351–363. https://doi.org/10.1016/S0957-4174(02)00185-9

    Article  Google Scholar 

  26. Zhang B (2003) Comparison of the performance of center-based clustering algorithms. In: Advances in knowledge discovery and data mining, PAKDD 2003. Lecture notes in computer science, vol 2637. Springer, Seoul, pp 63–74. https://doi.org/10.1007/3-540-36175-8_7

  27. Wang X, Hamilton H (2005) A comparative study of two density-based spatial clustering algorithms for very large datasets. In: Advances in artificial intelligence, AI 2005. Lecture notes in computer science, vol 3501. Springer, Victoria, pp 120–132. https://doi.org/10.1007/11424918_14

  28. Singh P, Dutta M (2012) Performance analysis of clustering methods for outlier detection. In: 2012 second international conference on advanced computing & communication technologies (ACCT 2012). IEEE Press, Rohtak, pp 89–95. https://doi.org/10.1109/acct.2012.84

  29. Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya A, Foufou S, Bouras A (2014) A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput 2(3):267–279. https://doi.org/10.1109/TETC.2014.2330519

    Article  Google Scholar 

  30. Jung Y, Kang M, Heo J (2014) Clustering performance comparison using k-means and expectation maximization algorithms. Biotechnol Biotechnol Equip 28(2):S44–S48. https://doi.org/10.1080/13102818.2014.949045

    Article  Google Scholar 

  31. Bhatnagar V, Majhi R, Jena P (2017) Comparative performance evaluation of clustering algorithms for grouping manufacturing firms. Arab J Sci Eng 43(8):4071–4083. https://doi.org/10.1007/S13369-017-2788-4

    Article  Google Scholar 

  32. Renjith S, Sreekumar A, Jathavedan M (2018) Evaluation of partitioning clustering algorithms for processing social media data in tourism domain. In: 2018 IEEE recent advances in intelligent computational systems (RAICS). IEEE Press, Thiruvananthapuram, pp 127–131. https://doi.org/10.1109/raics.2018.8635080

  33. Kohonen T (1997) Exploration of very large databases by self-organizing maps. In: International conference on neural networks (ICNN’97), vol 1. IEEE Press, Houston, pp PL1–PL6. https://doi.org/10.1109/icnn.1997.611622

  34. Roweis S (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/SCIENCE.290.5500.2323

    Article  Google Scholar 

  35. Ding C, He X, Zha H, Simon H (2002) Adaptive dimension reduction for clustering high dimensional data. In: 2002 IEEE international conference on data mining. IEEE Computer Society, Maebashi City, pp 147–154. https://doi.org/10.1109/icdm.2002.1183897

  36. Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  37. Wang Q, Li J (2009) Combining local and global information for nonlinear dimensionality reduction. Neurocomputing 72(10–12):2235–2241. https://doi.org/10.1016/J.NEUCOM.2009.01.006

    Article  Google Scholar 

  38. Araujo D, Doria Neto A, Martins A, Melo J (2011) Comparative study on dimension reduction techniques for cluster analysis of microarray data. In: The 2011 international joint conference on neural networks. IEEE Press, San Jose, pp 1835–1842. https://doi.org/10.1109/ijcnn.2011.6033447

  39. Chui CK, Wang J (2013) Nonlinear methods for dimensionality reduction. In: Handbook of geomathematics, pp 1–46. https://doi.org/10.1007/978-3-642-27793-1_34-2

  40. Song M, Yang H, Siadat S, Pechenizkiy M (2013) A comparative study of dimensionality reduction techniques to enhance trace clustering performances. Expert Syst Appl 40(9):3722–3737. https://doi.org/10.1016/J.ESWA.2012.12.078

    Article  Google Scholar 

  41. Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw 61(6):1–36. https://doi.org/10.18637/JSS.V061.I06

    Article  Google Scholar 

  42. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  43. Dunn J (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57. https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  44. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3(1):1–27. https://doi.org/10.1080/03610927408827101

    Article  MathSciNet  MATH  Google Scholar 

  45. Davies D, Bouldin D (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI 1(2):224–227. https://doi.org/10.1109/tpami.1979.4766909

  46. R Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  47. Tierney L (2012) The R statistical computing environment. In: Lecture notes in statistics, pp 435–447. https://doi.org/10.1007/978-1-4614-3520-4_41

  48. Racine J (2011) RStudio: a platform-independent IDE for R and Sweave. J Appl Econ 27(1):167–172. https://doi.org/10.1002/JAE.1278

    Article  Google Scholar 

  49. Goldberg K, Roeder T, Gupta D, Perkins C (2001) Eigentaste: a constant time collaborative filtering algorithm. Inf Retr 4(2):133–151. https://doi.org/10.1023/A:1011419012209

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shini Renjith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Renjith, S., Sreekumar, A., Jathavedan, M. (2020). Pragmatic Evaluation of the Impact of Dimensionality Reduction in the Performance of Clustering Algorithms. In: Sengodan, T., Murugappan, M., Misra, S. (eds) Advances in Electrical and Computer Technologies. Lecture Notes in Electrical Engineering, vol 672. Springer, Singapore. https://doi.org/10.1007/978-981-15-5558-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5558-9_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5557-2

  • Online ISBN: 978-981-15-5558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics