Skip to main content

Operating High-Powered Automated Vehicle Storage and Retrieval Systems in Multi-deep Storage

  • Conference paper
  • First Online:
LISS2019

Abstract

Automated vehicle storage and retrieval systems (AVSRS) allow for a flexible and powerful way to supply picking or manufacturing areas based on the goods-to-person principle. AVSRS with tier- and aisle-captive vehicles achieve the highest throughput capacity which can be further increased by deploying more than one vehicle on each tier of an aisle. With these high-powered AVSRS, it is possible to compensate for the reduction of throughput capacity in multi-deep storage systems where relocation operations occur frequently and result in more transportation tasks. In this work, we present and compare different algorithms for efficiently accomplishing relocation operations in high-powered AVSRS. We conduct a series of simulation experiments to analyze the performance of these algorithms and evaluate the application of high-powered AVSRS in multi-deep storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. VDI 2692 Part 1 (2015). Automated vehicle storage and retrieval systems for small unit loads, Beuth.

    Google Scholar 

  2. FEM 9.860 (2017). Cycle time calculation for automated vehicle storage and retrieval systems. European Materials Handling Federation.

    Google Scholar 

  3. Lienert, T., & Fottner, J. (2018). Routing-based sequencing applied to shuttle systems. In 21st International Conference 2018 (pp. 2949–2954).

    Google Scholar 

  4. Carlo, H. J., & Vis, I. F. A. (2012). Sequencing dynamic storage systems with multiple lifts and shuttles. International Journal of Production Economics, 140, 844–853.

    Article  Google Scholar 

  5. Zhao, N., Luo, L., & Lodewijks, G. (2018). Scheduling two lifts on a common rail considering acceleration and deceleration in a shuttle based storage and retrieval system. Computers & Industrial Engineering, 124, 48–57.

    Article  Google Scholar 

  6. Kress, D., Dornseifer, J., & Jaehn, F. (2019). An exact solution approach for scheduling cooperative gantry cranes. European Journal of Operational Research, 273(1), 82–101.

    Article  Google Scholar 

  7. Peterson, B., Harjunkoski, I., Hoda, S., & Hooker, J. N. (2014). Scheduling multiple factory cranes on a common track. Computers & Operations Research, 48, 102–112.

    Article  Google Scholar 

  8. Takahashi, S., Kita, H., Suzuki, H., Sudo, T., & Markon, S. (2003). Simulation-based optimization of a controller for multi-car elevators using a genetic algorithm for noisy fitness function. In The 2003 Congress on Evolutionary Computation, CEC 2003, Canberra, Australia (pp. 1582–1587).

    Google Scholar 

  9. Erdoğan, G., Battarra, M., & Laporte, G. (2014). Scheduling twin robots on a line. Naval Research Logistics, 61(2), 119–130.

    Article  Google Scholar 

  10. Atz T. Eine algorithmenbasierte Methode zur ganzheitlichen Systemplanung automatischer Hochregallager. Dissertation, Technische Universität München. https://doi.org/10.2195/lj_proc_doerr_de_201610_01.

  11. Dörr, K., & Furmans, K. Durchsatzbetrachtungen für doppeltiefe Lager unter dem Einsatz von zwei Lastaufnahmemitteln, 3-8316-0581-53-8316-0581-5.

    Google Scholar 

  12. Seemüller, S. (2006). Durchsatzberechnung automatischer Kleinteilelager im Umfeld des elektronischen Handels. München: Utz.

    Google Scholar 

  13. Lerher, T. (2016). Travel time model for double-deep shuttle-based storage and retrieval systems. International Journal of Production Research, 54(9), 2519–2540.

    Article  Google Scholar 

  14. Tappia, E., Roy, D., de Koster, M.B.M., & Melacini, M. Modeling, analysis, and design insights for shuttle-based compact storage systems. Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam ERS-2015-010-LIS. https://ideas.repec.org/p/ems/eureri/78379.html.

  15. Kemme, N. (2011). RMG crane scheduling and stacking. In J. W. Böse (Ed.), Operations Research/Computer Science Interfaces Series, Handbook of Terminal Planning (pp. 271–301). New York: Springer.

    Google Scholar 

  16. Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: A review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59–79.

    Article  Google Scholar 

  17. Habl, A., Lienert, T., Pradines, G., & Fottner, J. (2019). Vehicle coordination and configuration in high-powered automated vehicle storage and retrieval systems. 18. ASIM-Fachtagung Simulation in Produktion und Logistik, Chemnitz (Submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Habl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habl, A., Plapp, V., Fottner, J. (2020). Operating High-Powered Automated Vehicle Storage and Retrieval Systems in Multi-deep Storage. In: Zhang, J., Dresner, M., Zhang, R., Hua, G., Shang, X. (eds) LISS2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-5682-1_52

Download citation

Publish with us

Policies and ethics