Skip to main content

Molecular Mechanisms of Early Breast Cancer

  • Chapter
  • First Online:
Management of Early Stage Breast Cancer

Abstract

The molecular mechanism of any cancer includes complex alterations of genetic, epigenetic, transcriptomic, and proteomic make-up and evolution of any cell type. The process can extend from understanding the driver and passenger genetic alterations to actionable alterations in coherent cell signaling pathways. One of the major factors for complexity is molecular heterogeneity in cancer. Molecular heterogeneity can be within different clones of cell types representing different molecular changes in the same tumor tissue (intra-tumoral or clonal) or between different tumor types giving different molecular patterns in the same tissue or organ (inter-tumoral). Inter-tumoral heterogeneity has been further understood as different molecular profiles of two metastatic lesions of the same primary (inter-metastatic) or different clones of one metastatic lesion of a primary tumor (intra-metastatic), and at an organismal level, heterogeneity can be due to different molecular profiles of the same tumor in different subjects (inter-patient) (Vogelstein et al., Science 339:1546–58, 2013). With the availability of high-resolution cellular imaging, next-generation sequencing, and rapid multiomic experimental methods, currently, there has been a rapid expansion of knowledge on molecular changes happening in cancer cells, during the transformative initiation of normal cells to cancer cells, the evolution during natural history as well as treatment and finally the uncontrollable expansion and metastasis. In this chapter, we summarize the biology of breast cancer development, molecular classification, and subsequently molecular oncology of clinical significance and a note on hereditary breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    OMIM: Online Mendelian Inheritance in Man is a comprehensive compendium of human genes and genetic phenotypes that is freely available over the internet at the website omim.org and updated daily. OMIM is authored by McKusick-Nathans Institute of Genetic Medicine and Johns Hopkins University School of Medicine.

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  2. Yue W, Yager JD, Wang JP, Jupe ER, Santen RJ. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids. 2013;78(2):161–70. https://doi.org/10.1016/j.steroids.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  3. Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8(9):671–82. https://doi.org/10.1038/nrc2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77. https://doi.org/10.1186/bcr2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6(4):353–67. https://doi.org/10.1158/2159-8290.CD-15-0894.

    Article  CAS  PubMed  Google Scholar 

  6. Drabsch Y, ten Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3–4):553–68. https://doi.org/10.1007/s10555-012-9375-7.

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The cancer genome atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20. https://doi.org/10.1038/ng.2764.

    Article  CAS  Google Scholar 

  8. Lu L, Zhang C, Zhu G, Irwin M, Risch H, Menato G, et al. Telomerase expression and telomere length in breast cancer and their associations with adjuvant treatment and disease outcome. Breast Cancer Res. 2011;13(3):R56. https://doi.org/10.1186/bcr2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cella D, Wang M, Wagner L, Miller K. Survival-adjusted health-related quality of life (HRQL) among patients with metastatic breast cancer receiving paclitaxel plus bevacizumab versus paclitaxel alone: results from Eastern Cooperative Oncology Group Study 2100 (E2100). Breast Cancer Res Treat. 2011;130(3):855–61. https://doi.org/10.1007/s10549-011-1725-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73. https://doi.org/10.1038/nrc2620.

    Article  CAS  PubMed  Google Scholar 

  11. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. https://doi.org/10.1038/nature10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8. https://doi.org/10.1038/nrm2858.

    Article  CAS  PubMed  Google Scholar 

  13. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30. https://doi.org/10.1085/jgp.8.6.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46. https://doi.org/10.1038/sj.onc.1209597.

    Article  CAS  PubMed  Google Scholar 

  15. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48. https://doi.org/10.1101/gad.1756509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bohling SD, Allison KH. Immunosuppressive regulatory T cells are associated with aggressive breast cancer phenotypes: a potential therapeutic target. Mod Pathol. 2008;21(12):1527–32. https://doi.org/10.1038/modpathol.2008.160.

    Article  CAS  PubMed  Google Scholar 

  17. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91. https://doi.org/10.1200/JCO.2014.58.1967.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson E, Clarke RB, Howell A. Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia. 1998;3(1):23–35. https://doi.org/10.1023/a:1018718117113.

    Article  CAS  PubMed  Google Scholar 

  19. Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 2006;98(14):1011–4. https://doi.org/10.1093/jnci/djj267.

    Article  CAS  PubMed  Google Scholar 

  20. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. https://doi.org/10.1016/j.stem.2007.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. https://doi.org/10.1073/pnas.0530291100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shah M, Allegrucci C. Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells. Subcell Biochem. 2013;61:545–65. https://doi.org/10.1007/978-94-007-4525-4_24.

    Article  CAS  PubMed  Google Scholar 

  23. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9. https://doi.org/10.1016/j.cell.2009.08.017.

    Article  CAS  PubMed  Google Scholar 

  24. Jordan VC, O’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol. 2007;25(36):5815–24. https://doi.org/10.1200/JCO.2007.11.3886.

    Article  CAS  PubMed  Google Scholar 

  25. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95(7):927–37. https://doi.org/10.1016/s0092-8674(00)81717-1.

    Article  CAS  PubMed  Google Scholar 

  26. Wakeling AE, Dukes M, Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 1991;51(15):3867–73.

    CAS  PubMed  Google Scholar 

  27. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45(12):1446–51. https://doi.org/10.1038/ng.2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45(12):1439–45. https://doi.org/10.1038/ng.2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 2015;15(5):261–75. https://doi.org/10.1038/nrc3920.

    Article  CAS  PubMed  Google Scholar 

  30. Latta EK, Tjan S, Parkes RK, O’Malley FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol. 2002;15(12):1318–25. https://doi.org/10.1097/01.MP.0000038462.62634.B1.

    Article  CAS  PubMed  Google Scholar 

  31. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72. https://doi.org/10.1056/NEJMoa052306.

    Article  CAS  PubMed  Google Scholar 

  32. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40. https://doi.org/10.1016/j.ccr.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  33. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43. https://doi.org/10.1056/NEJMoa064320.

    Article  CAS  PubMed  Google Scholar 

  34. Wang SE. The functional crosstalk between HER2 tyrosine kinase and TGF-beta signaling in breast cancer malignancy. J Signal Transduct. 2011;2011:804236. https://doi.org/10.1155/2011/804236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015;6(13):11652–63. https://doi.org/10.18632/oncotarget.3457.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7(5):e1000279. https://doi.org/10.1371/journal.pmed.1000279.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68. https://doi.org/10.1186/bcr2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  40. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. https://doi.org/10.1172/JCI45014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Rothe F, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol. 2018;29(4):895–902. https://doi.org/10.1093/annonc/mdy024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 2018;33(4):690–705.e9. https://doi.org/10.1016/j.ccell.2018.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54. https://doi.org/10.1038/nature17676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33. https://doi.org/10.1038/ng.2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Newman B, Austin MA, Lee M, King MC. Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci U S A. 1988;85(9):3044–8. https://doi.org/10.1073/pnas.85.9.3044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Phipps RF, Perry PM. Familial breast cancer. Postgrad Med J. 1988;64(757):847–9. https://doi.org/10.1136/pgmj.64.757.847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sellers TA, Potter JD, Rich SS, Drinkard CR, Bostick RM, Kushi LH, et al. Familial clustering of breast and prostate cancers and risk of postmenopausal breast cancer. J Natl Cancer Inst. 1994;86(24):1860–5. https://doi.org/10.1093/jnci/86.24.1860.

    Article  CAS  PubMed  Google Scholar 

  48. Walsh T, King MC. Ten genes for inherited breast cancer. Cancer Cell. 2007;11(2):103–5. https://doi.org/10.1016/j.ccr.2007.01.010.

    Article  CAS  PubMed  Google Scholar 

  49. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250(4988):1684–9. https://doi.org/10.1126/science.2270482.

    Article  CAS  PubMed  Google Scholar 

  50. Lenoir G. Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet. 1991;338(8759):82–3. https://doi.org/10.1016/0140-6736(91)90076-2.

    Article  PubMed  Google Scholar 

  51. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. https://doi.org/10.1126/science.7545954.

    Article  CAS  PubMed  Google Scholar 

  52. Clark SL, Rodriguez AM, Snyder RR, Hankins GD, Boehning D. Structure-function of the tumor suppressor BRCA1. Comput Struct Biotechnol J. 2012;1(1):e201204005. https://doi.org/10.5936/csbj.201204005.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D 3rd, Fukuda M, et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci U S A. 2003;100(10):5646–51. https://doi.org/10.1073/pnas.0836054100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greenberg RA. Cancer. BRCA1, everything but the RING? Science. 2011;334(6055):459–60. https://doi.org/10.1126/science.1214057.

    Article  CAS  PubMed  Google Scholar 

  55. Heine GF, Parvin JD. BRCA1 control of steroid receptor ubiquitination. Sci STKE. 2007;2007(391):pe34. https://doi.org/10.1126/stke.3912007pe34.

    Article  PubMed  Google Scholar 

  56. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature. 2011;477(7363):179–84. https://doi.org/10.1038/nature10371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. You Z, Bailis JM. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol. 2010;20(7):402–9. https://doi.org/10.1016/j.tcb.2010.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98(9):5134–9. https://doi.org/10.1073/pnas.081068398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atipairin A, Canyuk B, Ratanaphan A. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs. Breast Cancer Res Treat. 2011;126(1):203–9. https://doi.org/10.1007/s10549-010-1182-7.

    Article  CAS  PubMed  Google Scholar 

  60. Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 2011;20(6):797–809. https://doi.org/10.1016/j.ccr.2011.11.014.

    Article  CAS  PubMed  Google Scholar 

  61. Chen CF, Li S, Chen Y, Chen PL, Sharp ZD, Lee WH. The nuclear localization sequences of the BRCA1 protein interact with the importin-alpha subunit of the nuclear transport signal receptor. J Biol Chem. 1996;271(51):32863–8. https://doi.org/10.1074/jbc.271.51.32863.

    Article  CAS  PubMed  Google Scholar 

  62. Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A, et al. BRCA1-associated growth arrest is RB-dependent. Proc Natl Acad Sci U S A. 1999;96(21):11866–71. https://doi.org/10.1073/pnas.96.21.11866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999;285(5428):747–50. https://doi.org/10.1126/science.285.5428.747.

    Article  CAS  PubMed  Google Scholar 

  64. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997;88(2):265–75. https://doi.org/10.1016/s0092-8674(00)81847-4.

    Article  CAS  PubMed  Google Scholar 

  65. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006;103(47):17834–9. https://doi.org/10.1073/pnas.0604129103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Q, Zhang H, Kajino K, Greene MI. BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene. 1998;17(15):1939–48. https://doi.org/10.1038/sj.onc.1202403.

    Article  CAS  PubMed  Google Scholar 

  67. Sy SM, Huen MS, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A. 2009;106(17):7155–60. https://doi.org/10.1073/pnas.0811159106.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286(5442):1162–6. https://doi.org/10.1126/science.286.5442.1162.

    Article  CAS  PubMed  Google Scholar 

  69. Leung CC, Glover JN. BRCT domains: easy as one, two, three. Cell Cycle. 2011;10(15):2461–70. https://doi.org/10.4161/cc.10.15.16312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamane K, Katayama E, Tsuruo T. The BRCT regions of tumor suppressor BRCA1 and of XRCC1 show DNA end binding activity with a multimerizing feature. Biochem Biophys Res Commun. 2000;279(2):678–84. https://doi.org/10.1006/bbrc.2000.3983.

    Article  CAS  PubMed  Google Scholar 

  71. Kobayashi M, Ab E, Bonvin AM, Siegal G. Structure of the DNA-bound BRCA1 C-terminal region from human replication factor C p140 and model of the protein-DNA complex. J Biol Chem. 2010;285(13):10087–97. https://doi.org/10.1074/jbc.M109.054106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE, et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet. 1994;8(4):387–91. https://doi.org/10.1038/ng1294-387.

    Article  CAS  PubMed  Google Scholar 

  73. Liu J, Pan Y, Ma B, Nussinov R. “Similarity trap” in protein-protein interactions could be carcinogenic: simulations of p53 core domain complexed with 53BP1 and BRCA1 BRCT domains. Structure. 2006;14(12):1811–21. https://doi.org/10.1016/j.str.2006.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Javle M, Curtin NJ. The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer. 2011;105(8):1114–22. https://doi.org/10.1038/bjc.2011.382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265(5181):2088–90. https://doi.org/10.1126/science.8091231.

    Article  CAS  PubMed  Google Scholar 

  76. Gayther SA, Mangion J, Russell P, Seal S, Barfoot R, Ponder BA, et al. Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat Genet. 1997;15(1):103–5. https://doi.org/10.1038/ng0197-103.

    Article  CAS  PubMed  Google Scholar 

  77. Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhausen S, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996;12(3):333–7. https://doi.org/10.1038/ng0396-333.

    Article  CAS  PubMed  Google Scholar 

  78. Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem. 1997;272(51):31941–4. https://doi.org/10.1074/jbc.272.51.31941.

    Article  CAS  PubMed  Google Scholar 

  79. Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 2002;297(5588):1837–48. https://doi.org/10.1126/science.297.5588.1837.

    Article  CAS  PubMed  Google Scholar 

  80. Fradet-Turcotte A, Sitz J, Grapton D, Orthwein A. BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer. 2016;23(10):T1–T17. https://doi.org/10.1530/ERC-16-0297.

    Article  CAS  PubMed  Google Scholar 

  81. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22(1):106–16. https://doi.org/10.1016/j.ccr.2012.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mondal G, Rowley M, Guidugli L, Wu J, Pankratz VS, Couch FJ. BRCA2 localization to the midbody by Filamin A regulates cep55 signaling and completion of cytokinesis. Dev Cell. 2012;23(1):137–52. https://doi.org/10.1016/j.devcel.2012.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi E, Park PG, Lee HO, Lee YK, Kang GH, Lee JW, et al. BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev Cell. 2012;22(2):295–308. https://doi.org/10.1016/j.devcel.2012.01.009.

    Article  CAS  PubMed  Google Scholar 

  84. Mavaddat N, Barrowdale D, Andrulis IL, Domchek SM, Eccles D, Nevanlinna H, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev. 2012;21(1):134–47. https://doi.org/10.1158/1055-9965.EPI-11-0775.

    Article  CAS  Google Scholar 

  85. Silver DP, Livingston DM. Mechanisms of BRCA1 tumor suppression. Cancer Discov. 2012;2(8):679–84. https://doi.org/10.1158/2159-8290.CD-12-0221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lose F, Duffy DL, Kay GF, Kedda MA, Spurdle AB, Kathleen Cuningham Foundation Consortium for Research into Familial Breast C, et al. Skewed X chromosome inactivation and breast and ovarian cancer status: evidence for X-linked modifiers of BRCA1. J Natl Cancer Inst. 2008;100(21):1519–1529. https://doi.org/10.1093/jnci/djn345

  87. Schneider K, Zelley K, Nichols KE, Garber J. Li-Fraumeni syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle, WA: University of Washington, Seattle; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

    Google Scholar 

  88. Malkin D. Li-Fraumeni syndrome. Genes Cancer. 2011;2(4):475–84. https://doi.org/10.1177/1947601911413466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tomkova K, Tomka M, Zajac V. Contribution of p53, p63, and p73 to the developmental diseases and cancer. Neoplasma. 2008;55(3):177–81.

    CAS  PubMed  Google Scholar 

  90. Sidransky D, Tokino T, Helzlsouer K, Zehnbauer B, Rausch G, Shelton B, et al. Inherited p53 gene mutations in breast cancer. Cancer Res. 1992;52(10):2984–6.

    CAS  PubMed  Google Scholar 

  91. Chompret A, Abel A, Stoppa-Lyonnet D, Brugieres L, Pages S, Feunteun J, et al. Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet. 2001;38(1):43–7. https://doi.org/10.1136/jmg.38.1.43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6. https://doi.org/10.1200/JCO.2008.16.6959.

    Article  CAS  PubMed  Google Scholar 

  93. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33(21):2345–52. https://doi.org/10.1200/JCO.2014.59.5728.

    Article  CAS  PubMed  Google Scholar 

  94. Mai PL, Best AF, Peters JA, DeCastro RM, Khincha PP, Loud JT, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122(23):3673–81. https://doi.org/10.1002/cncr.30248.

    Article  CAS  PubMed  Google Scholar 

  95. Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome–a molecular and clinical review. Br J Cancer. 1997;76(1):1–14. https://doi.org/10.1038/bjc.1997.328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 2004;23(13):2330–8. https://doi.org/10.1038/sj.onc.1207396.

    Article  CAS  PubMed  Google Scholar 

  97. Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M, et al. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 2004;64(22):8318–27. https://doi.org/10.1158/0008-5472.CAN-04-1145.

    Article  CAS  PubMed  Google Scholar 

  98. Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16. https://doi.org/10.1093/jnci/djt277.

    Article  CAS  PubMed  Google Scholar 

  99. Bubien V, Bonnet F, Brouste V, Hoppe S, Barouk-Simonet E, David A, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50(4):255–63. https://doi.org/10.1136/jmedgenet-2012-101339.

    Article  CAS  PubMed  Google Scholar 

  100. Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monitor. 2004;10(10):RA235–41.

    CAS  Google Scholar 

  101. McVeigh TP, Choi JK, Miller NM, Green AJ, Kerin MJ. Lobular breast cancer in a CDH1 splice site mutation carrier: case report and review of the literature. Clin Breast Cancer. 2014;14(2):e47–51. https://doi.org/10.1016/j.clbc.2013.10.007.

    Article  PubMed  Google Scholar 

  102. Benusiglio PR, Malka D, Rouleau E, De Pauw A, Buecher B, Nogues C, et al. CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet. 2013;50(7):486–9. https://doi.org/10.1136/jmedgenet-2012-101472.

    Article  CAS  PubMed  Google Scholar 

  103. Beeghly-Fadiel A, Lu W, Gao YT, Long J, Deming SL, Cai Q, et al. E-cadherin polymorphisms and breast cancer susceptibility: a report from the Shanghai Breast Cancer study. Breast Cancer Res Treat. 2010;121(2):445–52. https://doi.org/10.1007/s10549-009-0579-7.

    Article  CAS  PubMed  Google Scholar 

  104. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18(1):38–43. https://doi.org/10.1038/ng0198-38.

    Article  CAS  PubMed  Google Scholar 

  105. Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat. 2005;26(6):513–9. https://doi.org/10.1002/humu.20253.

    Article  CAS  PubMed  Google Scholar 

  106. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15. https://doi.org/10.1158/1078-0432.CCR-06-0083.

    Article  CAS  PubMed  Google Scholar 

  107. Brown KA, McInnes KJ, Takagi K, Ono K, Hunger NI, Wang L, et al. LKB1 expression is inhibited by estradiol-17beta in MCF-7 cells. J Steroid Biochem Mol Biol. 2011;127(3–5):439–43. https://doi.org/10.1016/j.jsbmb.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  108. Takeda H, Miyoshi H, Kojima Y, Oshima M, Taketo MM. Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/−p53−/− compound mutant mice. Oncogene. 2006;25(12):1816–20. https://doi.org/10.1038/sj.onc.1209207.

    Article  CAS  PubMed  Google Scholar 

  109. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165–7. https://doi.org/10.1038/ng1959.

    Article  CAS  PubMed  Google Scholar 

  110. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506. https://doi.org/10.1056/NEJMoa1400382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cybulski C, Kluzniak W, Huzarski T, Wokolorczyk D, Kashyap A, Jakubowska A, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol. 2015;16(6):638–44. https://doi.org/10.1016/S1470-2045(15)70142-7.

    Article  CAS  PubMed  Google Scholar 

  112. Heikkinen T, Karkkainen H, Aaltonen K, Milne RL, Heikkila P, Aittomaki K, et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res. 2009;15(9):3214–22. https://doi.org/10.1158/1078-0432.CCR-08-3128.

    Article  CAS  PubMed  Google Scholar 

  113. Hofstatter EW, Domchek SM, Miron A, Garber J, Wang M, Componeschi K, et al. PALB2 mutations in familial breast and pancreatic cancer. Familial Cancer. 2011;10(2):225–31. https://doi.org/10.1007/s10689-011-9426-1.

    Article  CAS  PubMed  Google Scholar 

  114. Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217. https://doi.org/10.1126/science.1171202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL, Guideline Development Group ACoMG, et al. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87. https://doi.org/10.1038/gim.2014.147.

    Article  PubMed  Google Scholar 

  116. Mehta PA, Tolar J. Fanconi anemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle, WA: University of Washington, Seattle; 1993. p. 1993–2018.

    Google Scholar 

  117. Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J Nat Genet. 2005;37(9):934–5. https://doi.org/10.1038/ng1625.

    Article  CAS  Google Scholar 

  118. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41. https://doi.org/10.1038/ng1902.

    Article  CAS  PubMed  Google Scholar 

  119. Weischer M, Bojesen SE, Tybjaerg-Hansen A, Axelsson CK, Nordestgaard BG. Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol. 2007;25(1):57–63. https://doi.org/10.1200/JCO.2005.05.5160.

    Article  CAS  PubMed  Google Scholar 

  120. Cybulski C, Huzarski T, Byrski T, Gronwald J, Debniak T, Jakubowska A, et al. Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet. 2009;75(1):72–8. https://doi.org/10.1111/j.1399-0004.2008.01111.x.

    Article  CAS  PubMed  Google Scholar 

  121. Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol. 2016;40(5):425–31. https://doi.org/10.1002/gepi.21971.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Suwaki N, Klare K, Tarsounas M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol. 2011;22(8):898–905. https://doi.org/10.1016/j.semcdb.2011.07.019.

    Article  CAS  PubMed  Google Scholar 

  123. Wang Z, Dong H, Fu Y, Ding H. RAD51 135G>C polymorphism contributes to breast cancer susceptibility: a meta-analysis involving 26,444 subjects. Breast Cancer Res Treat. 2010;124(3):765–9. https://doi.org/10.1007/s10549-010-0885-0.

    Article  CAS  PubMed  Google Scholar 

  124. Zhou GW, Hu J, Peng XD, Li Q. RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;125(2):529–35. https://doi.org/10.1007/s10549-010-1031-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanth Ariyannur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ariyannur, P., Srinivasalu, V.K. (2021). Molecular Mechanisms of Early Breast Cancer. In: Kunheri, B., Vijaykumar, D.K. (eds) Management of Early Stage Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-15-6171-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6171-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6170-2

  • Online ISBN: 978-981-15-6171-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics