Skip to main content

Mitigation of Groundwater Pollution: Heavy Metal Retention Characteristics of Fly Ash Based Liner Materials

  • Chapter
  • First Online:
Fate and Transport of Subsurface Pollutants

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 24))

Abstract

Leachates generated from the landfills are considered as one of the major source of groundwater contamination and surrounding geoenvironment. An efficient engineered liner for the landfills assists to mitigate the groundwater contaminants by acting as an effective hydro-chemical barrier for the leachate. For geomaterials used in liners, it is important to determine the appropriate range of compaction parameters that would ensure hydraulic conductivity and mitigation of the groundwater contaminants within safe limits. Fly ash based liner materials can be much effective as it not only will solve the problem of proper and safe disposing of fly ash but also will be better liner material in comparison to sand bentonite mixes. The addition of cohesionless fly ash would improve the strength and reduce the shrinkage behavior of bentonite but at the same time might increase the hydraulic conductivity. Hence, it is important to determine the ranges of water content and dry unit weight for different bentonite–fly ash mixes that would satisfy the desired ranges of hydraulic conductivity and strength. The objective for the present chapter is to identify the bentonite–fly ash mix that enables maximum use of fly ash, for the hydraulic conductivity and mitigation of the groundwater contaminants. Various literatures have reported the potential valorization of a bentonite–fly ash mix as a compacted landfill liner compacted at optimum moisture content, satisfying the regulatory requirements of landfill liners. In addition, the groundwater contaminants retention characteristics of fly ash–bentonite mixes were also reported. Hence, the laboratory results discussed in this chapter would be quite handy for deciding the appropriate bentonite–fly ash mix to be evaluated at field scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Rukah Y, Al-Kofahi O (2001) The assessment of the effect of landfill leachate on groundwater quality – a case study, El-Akader Landfill Site – North Jordan. Arid Environ 49:615–630

    Article  Google Scholar 

  • Adeniji A (2004) Bioremediation of arsenic, chromium, lead, and mercury. National Network of Environmental Management Studies Fellow for US Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC

    Google Scholar 

  • Aderemi AO, Oriaku AV, Adewumi GA, Otitoloju AA (2011) Assessment of groundwater contamination by leachate near a municipal solid waste landfill. Afr J Environ Sci Technol 5(11):933–940

    CAS  Google Scholar 

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363

    Article  CAS  Google Scholar 

  • Akgün H, Türkmenoğlu AG, Met İ, Yal GP, Koçkar MK, Karakas ZS (2017) The use of Ankara clay as a compacted clay liner for landfill sites. Clay Miner 52(3):391–412

    Article  Google Scholar 

  • Alam J, Akhtar MN (2011) Fly ash utilization in different sectors in Indian scenario. Int J Emerg Trend Eng Dev 1(1):1–14

    Google Scholar 

  • Alcamo J, Henrichs T, Rösch T (2017) World water in 2025: global modeling and scenario analysis for the world commission on water for the 21st century. Center for Environmental Systems Research, University of Kassel, Kassel

    Google Scholar 

  • Aldaeef AA, Rayhani MT (2014) Hydraulic performance of compacted clay liners (CCLs) under combined temperature and leachate exposures. Waste Manag 34(12):2548–2560

    Article  CAS  PubMed  Google Scholar 

  • Al-Khadi S (2006) Assessment of groundwater contamination vulnerability in the vicinity of Abqaiq landfill-a GIS approach. King Fahd University of Petroleum and Minerals, Dhahran

    Google Scholar 

  • Ameta NK, Purohit DGM, Wayal AS (2007) Characteristics, problems and remedies of expansive soils of Rajasthan, India. EJGE 13:1–7

    Google Scholar 

  • Arasan S (2010) Effect of chemicals on geotechnical properties of clay liners: a review. Res J Appl Sci Eng Technol 2(8):765–775

    CAS  Google Scholar 

  • Armstrong MD, Rowe RK (1999) Effect of landfill operations on the quality of municipal solid waste leachate. In: Proc. 3rd int. landfill symp., Cagliari. CISA Publisher, Cagliari, pp 81–88

    Google Scholar 

  • Arul Manikandan N, Alemu AK, Goswami L, Pakshirajan K, Pugazhenthi G (2016) Waste litchi peels for Cr (VI) removal from synthetic wastewater in batch and continuous systems: sorbent characterization, regeneration and reuse study. J Environ Eng 142(9):C4016001

    Article  Google Scholar 

  • Ashish B, Neeti K, Himanshu K (2013) Copper toxicity: a comprehensive study. Res J Recent Sci 2(ISC-2012):58–67

    CAS  Google Scholar 

  • Azad FM, El-Zein A, Rowe RK, Airey DW (2012) Modelling of thermally induced desiccation of geosynthetic clay liners in double composite liner systems. Geotext Geomembr 34:28–38

    Article  Google Scholar 

  • Barrett A, Lawlor J (1995) The economics of waste management in Ireland. Economic and Social Research Institute, Dublin

    Google Scholar 

  • Bellir K, Bencheikh-Lehocine M, Meniai AH, Gherbi N (2005) Study of the retention of heavy metals by natural material used as liners in landfills. Desalination 185(1–3):111–119

    Article  CAS  Google Scholar 

  • Benson CH, Trast JM (1995) Hydraulic conductivity of thirteen compacted clays. J Clay Mineral 43(6):669–681

    Article  CAS  Google Scholar 

  • Bind A, Goswami L, Prakash V (2018) Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: sorbent preparation, characterization, regeneration and cost estimation. Geol Ecol Landsc 2(2):61–72

    Google Scholar 

  • Bind A, Kushwaha A, Devi G, Goswami S, Sen B, Prakash V (2019) Biosorption valorization of floating and submerged macrophytes for heavy-metal removal in a multi-component system. Appl Water Sci 9(4):95

    Google Scholar 

  • Bouazza A (2002) Geosynthetic clay liners. Geotext Geomembr 20(1):3–17

    Article  Google Scholar 

  • Bowders JJ Jr, Daniel DE (1987) Hydraulic conductivity of compacted clay to dilute organic chemicals. J Geotech Eng 113(12):1432–1448

    Article  Google Scholar 

  • Bowders JJ Jr, Gidley JS, Usmen MA (1990) Permeability and leachate characteristics of stabilized class F fly ash. Transp Res Rec 1288:70–77

    Google Scholar 

  • Buenrostro O, Bocco G (2003) Solid waste management in municipalities in Mexico: goals and perspectives. Resour Conserv Recycl 39(3):251–263

    Article  Google Scholar 

  • Burke F, Hamza S, Naseem S, Nawaz-ul-Huda S, Azam M, Khan I (2016) Impact of cadmium polluted groundwater on human health: winder, Balochistan. SAGE Open 6(1):2158244016634409

    Article  Google Scholar 

  • Cawley MR, Jones N (1999) Compacted clay liners. Term Paper CE 540:1–22

    Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15(3):375–382

    CAS  Google Scholar 

  • Chalermyanont T, Arrykul S (2005) Compacted sand-bentonite mixtures for hydraulic containment liners. Songklanakarin J Sci Technol 27(2):313–323

    CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16(7–8):659–718

    Article  CAS  Google Scholar 

  • Cokca E, Yilmaz Z (2004) Use of rubber and bentonite added fly ash as a liner material. Waste Manag 24(2):153–164

    Article  CAS  PubMed  Google Scholar 

  • Daniel DE (1984) Predicting hydraulic conductivity of clay liners. J Geotech Eng 110(2):285–300

    Article  Google Scholar 

  • Daniel DE (1993) Clay liners. In: Geotechnical practice for waste disposal. Springer, Boston, MA, pp 137–163

    Chapter  Google Scholar 

  • Daniel DE, Benson C (1990) Water content–density criteria for compacted soil liners. J Geotech Eng 116(12):1811–1830

    Article  Google Scholar 

  • Das S, Lee SH, Kumar P, Kim KH, Lee SS, Bhattacharya SS (2019) Solid waste management: scope and the challenge of sustainability. J Clean Prod 228:658–678

    Article  Google Scholar 

  • De J, Dash HR, Das S (2014) Mercury pollution and bioremediation—a case study on biosorption by a mercury-resistant marine bacterium. In: Microbial biodegradation and bioremediation. Elsevier, Amsterdam, pp 137–166

    Chapter  Google Scholar 

  • Deka A, Sreedeep S (2017) Contaminant retention characteristics of fly ash–bentonite mixes. Waste Manag Res 35(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Dickinson S, Brachman RWI (2008) Assessment of alternative protection layers for a geomembrane–geosynthetic clay liner (GM–GCL) composite liner. Can Geotech J 45(11):1594–1610

    Article  Google Scholar 

  • Drescher J (1997) Deponiebau. Alphabet KG, Berlin

    Google Scholar 

  • Du YJ, Hayashi S (2006) A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material. Appl Clay Sci 32(1–2):14–24

    Article  CAS  Google Scholar 

  • Eid MM, Abdelrahman MT, Abdel-Aal FMB (2008) Sand bentonite mixture as a secondary liners in landfills. In: Proceedings of 17th international conference on soil mechanics and geotechnical engineering. Alexandria, Egypt, vol 1, pp 225–228

    Google Scholar 

  • EPA (1995) Seminar publication, landfill bioreactor design and operation. EPA/600/R-95/146. Office of Research and Development, Washington, DC, 230 p

    Google Scholar 

  • Fang HY, Evans JC (1988) Long-term permeability tests using leachate on a compacted clayey liner material. In: Ground-water contamination: field methods. ASTM International, West Conshohocken

    Google Scholar 

  • Fatta D, Papadopoulos A, Loizidou M (1999) A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environ Geochem Health 21(2):175–190

    Article  CAS  Google Scholar 

  • Fernandez F, Quigley RM (1985) Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can Geotech J 22(2):205–214

    Article  CAS  Google Scholar 

  • Fewtrell L (2014) Silver: water disinfection and toxicity. Aberystwyth University, Aberystwyth

    Google Scholar 

  • Fomenko EV, Anshits NN, Pankova MV, Solovyov LA, Anshits AG (2011) Fly ash cenospheres: composition, morphology, structure, and helium permeability. In: World of coal ash (WOCA) conference - May 9–12, 2011, in Denver, CO, USA. University of Kentucky, Center for Applied Energy Research, Lexington, KY

    Google Scholar 

  • Francisca FM, Glatstein DA (2010) Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl Clay Sci 49(3):187–193

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow-Johnson HS, Chow CK (2014) Copper: toxicological relevance and mechanisms. Arch Toxicol 88(11):1929–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami L, Kumar RV, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017a) Simultaneous polycyclic aromatic hydrocarbon degradation and lipid accumulation by Rhodococcus opacus for potential biodiesel production. J Water Process Eng 17:1–10

    Article  Google Scholar 

  • Goswami L, Namboodiri MT, Kumar RV, Pakshirajan K, Pugazhenthi G (2017b) Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energy 105:400–406

    Article  CAS  Google Scholar 

  • Goswami L, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017c) Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 7(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami L, Kumar RV, Borah SN, Manikandan NA, Pakshirajan K, Pugazhenthi G (2018a) Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: a review. J Water Process Eng 26:314–328

    Article  Google Scholar 

  • Goswami L, Manikandan NA, Dolman B, Pakshirajan K, Pugazhenthi G (2018b) Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. J Clean Prod 196:1282–1291

    Article  CAS  Google Scholar 

  • Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019a) A novel integrated biodegradation—microfiltration system for sustainable wastewater treatment and energy recovery. J Hazard Mater 365:707–715

    Article  CAS  PubMed  Google Scholar 

  • Goswami L, Manikandan NA, Taube JCR, Pakshirajan K, Pugazhenthi G (2019b) Novel waste-derived biochar from biomass gasification effluent: preparation, characterization, cost estimation, and application in polycyclic aromatic hydrocarbon biodegradation and lipid accumulation by Rhodococcus opacus. Environ Sci Pollut Res 26(24):25154–25166

    Article  CAS  Google Scholar 

  • Goswami L, Kumar RV, Manikandan NA, Pakshirajan K, Pugazhenthi G (2019c) Anthracene biodegradation by Oleaginous Rhodococcus opacus for biodiesel production and its characterization. Polycycl Aromat Compd

    Google Scholar 

  • Goswami L, Pakshirajan K, Pugazhenthi G (2020) Biological treatment of biomass gasification wastewater using hydrocarbonoclastic bacterium Rhodococcus opacus in an up-flow packed bed bioreactor with a novel waste-derived nano-biochar based bio-support material. J Clean Prod 256:120253

    Article  CAS  Google Scholar 

  • Gupt CB, Sreedeep S (2014) Volumetric shrinkage characteristics curve of highly expansive soils. In: NES-STUDENT GEOCONGRESS at IIT Guwahati, October (2014). IIT, Guwahati

    Google Scholar 

  • Gupt CB, Yamsani SK, Prakash A, Medhi CR, Sreedeep S (2018) Appropriate liquid-to-solid ratio for sorption studies of Bentonite. J Environ Eng 145(2):04018138

    Article  Google Scholar 

  • Gupt CB, Younus MM, Sreedeep S (2019) Utilization of thermal power plant by-product fly ash in waste management. In: Advances in waste management. Springer, Singapore, pp 479–491

    Chapter  Google Scholar 

  • Gupta PK, Kumar A, Goswami L, Yadav B (2020) Rhizospheric treatment of hydrocarbons containing wastewater. In: Microbial technology for health and Environment. Springer, Singapore, pp 289–301

    Chapter  Google Scholar 

  • Gupt CB, Bordoloi S, Sekharan S, Sarmah AK (2020a) Adsorption characteristics of Barmer bentonite for hazardous waste containment application. J Hazard Mater 396:122594

    Article  CAS  PubMed  Google Scholar 

  • Gupt CB, Bordoloi S, Sekharan S, Sarmah AK (2020b) A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner. Environ Pollut 265:114811

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Ma H, Shi G, He L, Wei L, Shi Q (2016) A review of groundwater contamination near municipal solid waste landfill sites in China. Sci Total Environ 569:1255–1264

    Article  PubMed  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388

    Article  CAS  Google Scholar 

  • He J, Wang Y, Li Y, Ruan XC (2015) Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay. Water Sci Eng 8(2):151–157

    Article  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management, vol 15. World Bank, Washington, DC, p 116

    Google Scholar 

  • Idrees N, Tabassum B, Abd_Allah EF, Hashem A, Sarah R, Hashim M (2018) Groundwater contamination with cadmium concentrations in some west UP regions, India. Saudi J Biol Sci 25(7):1365–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayawardhana Y, Kumarathilaka P, Herath I, Vithanage M (2016) Municipal solid waste biochar for prevention of pollution from landfill leachate. In: Environmental materials and waste. Academic Press, Cambridge, MA, pp 117–148

    Google Scholar 

  • Jhamnani B, Singh SK (2009) Groundwater contamination due to Bhalaswa landfill site in New Delhi. Int J Environ Sci Eng 1(3):121–125

    Google Scholar 

  • Karbowska B (2016) Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environ Monit Assess 188(11):640

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya A, Durukan S (2004) Utilization of bentonite-embedded zeolite as clay liner. Appl Clay Sci 25(1–2):83–91

    Article  CAS  Google Scholar 

  • Kayabali K (1997) Engineering aspects of a novel landfill liner material: bentonite-amended natural zeolite. Eng Geol 46(2):105–114

    Article  Google Scholar 

  • Keesari T, Sinha UK, Kamaraj P, Sharma DA (2019) Groundwater quality in a semi-arid region of India: suitability for drinking, agriculture and fluoride exposure risk. J Earth Syst Sci 128(2):24

    Article  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    Article  CAS  Google Scholar 

  • Kumar RV, Goswami L, Pakshirajan K, Pugazhenthi G (2016) Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J Water Process Eng 13:168–175

    Article  Google Scholar 

  • Kumar M, Goswami L, Singh AK, Sikandar M (2019) Valorization of coal fired-fly ash for potential heavy metal removal from the single and multi-contaminated system. Heliyon 5(10):e02562

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51

    Article  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Thomas T, David AA, Ahmed M (2017a) A new insight to adsorption and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium Acinetobacter junii L. Pb1 isolated from coal mine dump. Environ Sci Pollut Res 24(11):10652–10661

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S (2017b) Mechanism of soil-metal-microbe interactions and their implication on microbial bioremediation and phytoremediation. Environ Sci Eng Biodegrad Bioremed 8:279–305

    Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha A, Rani R, Patra JK (2020) Adsorption kinetics and molecular interactions of lead [Pb (II)] with natural clay and humic acid. Int J Environ Sci Technol 17(3):1325–1336

    Article  CAS  Google Scholar 

  • Li JH, Li L, Chen R, Li DQ (2016) Cracking and vertical preferential flow through landfill clay liners. Eng Geol 206:33–41

    Article  Google Scholar 

  • Longe EO, Balogun MR (2010) Groundwater quality assessment near a municipal landfill, Lagos, Nigeria. Res J Appl Sci Eng Technol 2(1):39–44

    CAS  Google Scholar 

  • Maheshwari RC (2006) Fluoride in drinking water and its removal. J Hazard Mater 137(1):456–463

    Article  PubMed  Google Scholar 

  • Mahmud K, Hossain MD, Shams S (2012) Different treatment strategies for highly polluted landfill leachate in developing countries. Waste Manag 32(11):2096–2105

    Article  CAS  PubMed  Google Scholar 

  • Mandal JN (2018) Geosynthetics engineering: in theory and practice. Research Publishing, Singapore

    Google Scholar 

  • Maubeuge KP, Mueller-Kirchenbauer A, Prasetyo BS (2012) Hydraulic performance of geosynthetic clay liners (GCLs) compared with compacted clay liners (CCLs) in landfill lining systems. In: Geosynthetics Asia 2012. IGS, Bangkok

    Google Scholar 

  • Melichová Z, Hromada L (2013) Adsorption of Pb2+ and Cu2+ ions from aqueous solutions on natural bentonite. Pol J Environ Stud 22(2):457–464

    Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C 34(1):1–32

    Article  CAS  Google Scholar 

  • Modin H (2012) Modern landfill leachates–quality and treatment. Lund University, Lund

    Google Scholar 

  • Mohamedzein Y, Al-Ghaithi A, Al-Aghbari M, Tabook B (2016) Assessment of dune sand-bentonite mixtures for use as landfill liners. J Solid Waste Technol Manag 42(1):25–34

    Article  CAS  Google Scholar 

  • Mohammed SAS, Naik M (2010) Adsorption characteristics of metals in aqueous solution by local materials with additives as liners for waste containment facilities. J Water Environ Technol 8(1):29–50

    Article  Google Scholar 

  • Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118(1–3):435–456

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Mishra AK (2017) Performance enhancement of sand–bentonite mixture due to addition of fiber and geosynthetic clay liner. Int J Geotech Eng 11(2):107–113

    CAS  Google Scholar 

  • Mukherjee K, Mishra AK (2019) Impact of glass fibre on hydromechanical behaviour of compacted sand–bentonite mixture for landfill application. Eur J Environ Civ Eng: 1–22. https://doi.org/10.1080/19648189.2019.1572541

  • Nagarajan R, Thirumalaisamy S, Lakshumanan E (2012) Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India. Iran J Environ Health Sci Eng 9(1):35

    Article  Google Scholar 

  • Naik M, Sivapullaiah PV (2012) Studies on use of sand-bentonite and sand-fly ash mixtures as prospective liner materials to retain iron and copper in aqueous solutions. Environ Manag Sustain Dev 1(2):151

    Google Scholar 

  • Nhan CT, Graydon JW, Kirk DW (1996) Utilizing coal fly ash as landfill barrier material. Waste Manag 16(7):587–595

    Article  CAS  Google Scholar 

  • NIRD and PR (2016) Solid waste management in rural areas a step-by-step guide for gram panchayats. NIRD and PR, Hyderabad

    Google Scholar 

  • Paul HV (2007) A new porous material based on cenospheres. Master of science thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology, USA

    Google Scholar 

  • Poly B, Sreedeep S (2011) Influence of soil-multiple contaminant retention parameters on contaminant fate prediction. J Hazard Toxic Radioact Waste 15(3):180–187

    Article  CAS  Google Scholar 

  • Saarela J (2003) Pilot investigations of surface parts of three closed landfills and factors affecting them. Environ Monit Assess 84:183–192

    Article  CAS  PubMed  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64(10):1782–1806

    Article  CAS  Google Scholar 

  • Santos FM, Mateus A, Figueiras J, Gonçalves MA (2006) Mapping groundwater contamination around a landfill facility using the VLF-EM method—a case study. J Appl Geophys 60(2):115–125

    Article  Google Scholar 

  • Sathe SS, Mahanta C, Mishra P (2018) Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India. J Contam Hydrol 213:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sathe SS, Goswami L, Mahanta C, Devi LM (2020) Integrated factors controlling arsenic mobilization in an alluvial floodplain. Environ Technol Innov 17:100525

    Article  Google Scholar 

  • Shankar S, Shanker U (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524

    Article  Google Scholar 

  • Shankara NM, Sivapullaiah PV, Syed Abu Sayeed M (2014) Sorption of Iron and copper on sand Bentonite fly ash mixtures. Int J Res Chem Environ 4(2):1–8

    CAS  Google Scholar 

  • Singh S, Prasad A (2007) Effects of chemicals on compacted clay liner. Electron J Geotech Eng 12(D):1–15

    Google Scholar 

  • Singh PK, Kushwaha A, Hans N, Gautam A, Rani R (2019) Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1. Braz J Microbiol 50(1):223–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivapullaiah PV, Baig MAA (2011) Gypsum treated fly ash as a liner for waste disposal facilities. Waste Manag 31(2):359–369

    Article  CAS  PubMed  Google Scholar 

  • Southen JM, Rowe RK (2005) Laboratory investigation of geosynthetic clay liner desiccation in a composite liner subjected to thermal gradients. J Geotech Geoenviron 131(7):925–935

    Article  Google Scholar 

  • Srikanth V, Mishra AK (2016) A laboratory study on the geotechnical characteristics of sand–bentonite mixtures and the role of particle size of sand. Int J Geosynth Ground Eng 2(1):3

    Article  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (1984) Office of Drinking Water. A ground water protection strategy for the Environmental Protection Agency. Office Ground-Water Protection, Washington, DC

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2015) Regulation development for drinking water contaminants. http://www.epa.gov/safewater.zendesk.com/hc/en-us/section/202346197-Thallium

  • Verma C, Madan S, Hussain A (2016) Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India. Cogent Eng 3(1):1179243

    Article  Google Scholar 

  • Waller RM (1982) Groundwater and the rural homeowner, Pamphlet. US Geological Survey

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. Fourth edition. WHO Chron 38(4):104–108

    Google Scholar 

  • Xiao T, Guha J, Boyle D, Liu CQ, Zheng B, Wilson GC, Rouleau A, Chen J (2004) Naturally occurring thallium: a hidden geoenvironmental health hazard. Environ Int 30(4):501–507

    Article  CAS  PubMed  Google Scholar 

  • Yadav MK, Gupta AK, Ghosal PS, Mukherjee A (2017) pH mediated facile preparation of hydrotalcite based adsorbent for enhanced arsenite and arsenate removal: insights on physicochemical properties and adsorption mechanism. J Mol Liq 240:240–252

    Article  CAS  Google Scholar 

  • Yılmaz G, Yetimoglu T, Arasan S (2008) Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions. Waste Manag Res 26(5):464–473

    Article  PubMed  Google Scholar 

  • Younus MM (2010) Laboratory investigations to maximize the utility of fly ash for landfill liner. Mtech thesis submitted to Department of Civil Engineering, IIT Guwahati, India

    Google Scholar 

  • Younus MM, Sreedeep S (2012) Evaluation of bentonite-fly ash mix for its application in landfill liners. J Test Eval 40(3):357–362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedeep Sekharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupt, C.B., Kushwaha, A., Prakash, A., Chandra, A., Goswami, L., Sekharan, S. (2021). Mitigation of Groundwater Pollution: Heavy Metal Retention Characteristics of Fly Ash Based Liner Materials. In: Gupta, P.K., Bharagava, R.N. (eds) Fate and Transport of Subsurface Pollutants. Microorganisms for Sustainability, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-15-6564-9_5

Download citation

Publish with us

Policies and ethics