Skip to main content

Sequential Advancements of DNA Profiling: An Overview of Complete Arena

  • Chapter
  • First Online:
Forensic DNA Typing: Principles, Applications and Advancements

Abstract

Discovery of DNA profiling technology has led the forensic investigations to another level of confidence. This technique is among the utmost discoveries of twentieth century that has revolutionized the criminal justice system. This chapter briefly recapitulates the sequential progressions made in the discipline of forensic DNA fingerprinting which aids the justice system in multiple ways by making it far more efficient in comparison to the existing conventional techniques. Right from the discovery of this substantial technique, current capillary electrophoresis based methods using autosomal STRs along with lineage markers (Y STRs, X-STRs, mtDNA) are covered here along with an insight to the latest advancements including the next generation sequencing (NGS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alghanim HJ, Almirall JR (2003) Development of microsatellite markers in Cannabis sativa for DNA typing and genetic relatedness analyses. Anal Bioanal Chem 376:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Aly SM, Sabri DM (2015) Next generation sequencing (NGS): a golden tool in forensic toolkit. Archiv Forensic Med Criminol 65(4):260–271

    Article  CAS  Google Scholar 

  • Ayres KL, Chaseling J, Balding DJ (2002) Implications for DNA identification arising from an analysis of Australian forensic databases. Forensic Sci Int 129:90–98

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne KN, Kayser M (2013) Additional Y-STRs in forensic: why, which and when. In: Jaiprakash S, Ray L (eds) Forensic DNA typing (current practices and emerging technologies). CRC Press, Boca Raton, FL

    Google Scholar 

  • Ballentyne KN, Goedbloed M, Fang R et al (2010) Mutability of Y-chromosome microsatellites: rates, characteristics, molecular basis and forensic application. Am J Hum Genet 82:341–353

    Article  CAS  Google Scholar 

  • Ballentyne KN, Keerl V, Wollstein A et al (2012) A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 6:208–218

    Article  CAS  Google Scholar 

  • Bar W et al (2000) DNA commission of the International society of forensic genetics: guidelines for mitochondrial DNA typing. Int J Legal Med 113(4):193–196

    Article  CAS  PubMed  Google Scholar 

  • Baxter-Lowe LA, Hunter B, Casper JT, Gorski J (1989) HLA gene amplification and hybridization analysis of polymorphism. J Clin Invest 84:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berglund EC, Kiialainen A, Syvanen AC (2011) Next generation sequencing technologies and applications for human genetic history and forensics. Investig Genet 2:23–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, Nielsen R et al (2007) The use of coded PCR primers enables high throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:e197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S et al (2011a) Epigenetic predictor of age. PLoS One 6:e14821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S, Vilain E (2011b) Epigenetic predictor of age. PLoS One 6:e14821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornman DM, Hester ME, Schuetter JM, Kasoji MD, Minard-Smith A, Barden CA et al (2012) Short-read, high-throughput sequencing technology for STR genotyping. Biotechniques:1–6

    Google Scholar 

  • Børsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89

    Article  PubMed  CAS  Google Scholar 

  • Brenner CH (2010) Fundamental problems of forensic mathematics - the evidential value of a rare haplotype. Forensic Sci Int Genet 4:281–291

    Article  PubMed  Google Scholar 

  • Brenner CH, Weir BS (2003) Issues and strategies in the identification of World Trade Centre victims. Theor Popul Biol 63:173–178

    Article  CAS  PubMed  Google Scholar 

  • Budowle B, Moretti TR, Niezgoda SJ, Brown BL (1998) CODIS and PCR-based short tandem repeat loci: law enforcement tools. In: Proceedings of the Second European Symposium on Human Identification. Promega Corporation, Madison, WI, pp 73–88

    Google Scholar 

  • Buga W, An TL, Begovich AB, Erlich HA (1990) Rapid HLA-DPB typing using enzymatically amplified DNA and non-radioactive sequence-specific oligonucleotide probes. Immunogenetics 32:231–241

    Google Scholar 

  • Bugawan TL, Horn GT, Long CM, Mickelson E, Hansen JA, Ferrara GB, Angelini G, Erlich HA (1988) Analysis of HLA-DP alleleic sequence polymorphism using the in vitro enzymatic DNA amplification of DPA and DP-loci. J Immunol 141:4024–4030

    CAS  PubMed  Google Scholar 

  • Butler JM (2005) Forensic DNA typing: biology, technology, and genetics of STR markers, 2nd edn. Elsevier Academic Press, New York, NY

    Google Scholar 

  • Butler JM (2006) Genetics and genomics of core STR loci used in human identity testing. J Forensic Sci 51(2):253–265

    Article  CAS  PubMed  Google Scholar 

  • Butler JM (2012) Advanced topics in forensic DNA typing: methodology. Elsevier Inc, Waltham, MA

    Google Scholar 

  • Butler JM, Hill CR (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev 24:15

    CAS  PubMed  Google Scholar 

  • Buyse I, Decorte R, Baens M, Cuppens H, Semana G, Emonds MP et al (1993) Rapid DNA typing of class II HLA antigens using the polymerase chain reaction and reverse dot blot hybridization. Tissue Antigens 41:114

    Article  Google Scholar 

  • Cao Y, Wan LH, Gu LG, Huang YX, Xiu CX, Hu SH et al (2006) Heteroplasmy in human mtDNA control region. Fa Yi Xue Za Zhi 22:190–192

    CAS  PubMed  Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B Biochem Mol Biol 126:455–476

    Article  CAS  PubMed  Google Scholar 

  • Coble MD, Loreille OM, Wadhams MJ et al (2009) Mystery solved: the identification of the two missing Romanov children using DNA analysis. PLoS One 4(3):e4838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courts C, Madea B (2010) Micro-RNA – a potential for forensic science? Forensic Sci Int 203:106–111

    Article  CAS  PubMed  Google Scholar 

  • Courts C, Madea B (2011) Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci 56:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Coyle HM, Ladd C, Palmbach T, Lee HC (2001) The green revolution: botanical contributions to forensics and drug enforcement. Croat Med J 42:340–345

    Google Scholar 

  • Coyle HM, Palmbach T, Juliano N, Ladd C, Lee HC (2003) An overview of DNA methods for the identification and individualization of marijuana. Croat Med J 44:315–321

    Google Scholar 

  • Dalsgaard S, Rockenbauer E, Gelardi C, Borsting C, Fordyse SL, Morling N (2013) Characterization of mutations and sequence variations in complex STR loci by second generation sequencing. Forensic Sci Int Genet Suppl Ser 4:e218–e219

    Article  Google Scholar 

  • Datwyler SL, Weiblen GD (2006) Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J For Sci 51:371–375

    CAS  Google Scholar 

  • Davis C, Ge J, Sprecher C, Chidambaram A, Thompson JM et al (2013) Prototype PowerPlex1 Y23 system: a concordance study. Forensic Sci Int 7:204–208

    Article  CAS  Google Scholar 

  • De Guglielmo MA, Rader JM, Bever RA (1994) Evaluation of Amp-FLP markers and summary of PCR-based forensic casework. In: Bär W, Fiori A, Rossi U (eds) Advances in forensic haemogenetics, vol 5. Springer, Berlin

    Google Scholar 

  • Dixon LA et al (2005) Validation of a 21 locus autosomal SNP multiplex for forensic identification purposes. Forensic Sci Int 154:62–77

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (2000) Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24:400–402

    Article  CAS  PubMed  Google Scholar 

  • Erlich HA, Scharf SJ, Long CM, Horn GT (1989) Analysis of isotypic and allotypic sequence variation in the HLA-DRb region using the in vitro enzymatic amplification of specific DNA segments. In: Dupont B (ed) Immunobiology of HLA. Springer, New York, NY, pp 181–187

    Chapter  Google Scholar 

  • Fordyce SL, Avial-Arcos MC, Rockenbauer E et al (2011) High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche genome sequencer FLX platform. Biotechniques 51:127–133

    CAS  PubMed  Google Scholar 

  • Fordyce SL, Mogensen HS, Borsting C, Lagac’e RE et al (2015) Second generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the ion PGMTM. Forensic Sci Int Genet 14:132–140

    Article  CAS  PubMed  Google Scholar 

  • Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5:517–524

    Article  CAS  PubMed  Google Scholar 

  • Fry NK, Savelkoul PH, Visca P (2009) Amplified fragment-length polymorphism analysis. Methods Mol Biol 551:89–104

    Article  CAS  PubMed  Google Scholar 

  • Gelardi C, Rockenbauer E, Dalsgaard S, Borsting C, Morling N (2014) Second generation sequencing of three complex STRs D3S1358, D21S11 and D12S391 in Danes and a proposal for nomenclature of sequenced STR alleles. Forensic Sci Int Genet 12:38–41

    Article  CAS  PubMed  Google Scholar 

  • Gettings KB, Aponte RA, Vallone PM, Butler JM (2015) STR allele sequence variation: current knowledge and future issues. Forensic Sci Int 18:118–130

    Article  CAS  Google Scholar 

  • Giardina E, Spinella A, Novelli G (2011) Past, present and future of forensic DNA typing. Nanomedicine (London) 6:257–270

    Article  CAS  Google Scholar 

  • Gill P, Sparkes R, Kimpton C (1997) Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci Int 89:185–197

    Article  CAS  PubMed  Google Scholar 

  • Gill P, Werrett DJ, Budowle B, Guerrieri R (2004) An assessment of whether SNPs will replace STRs in national DNA databases joint considerations of the DNA working group of the European Network of Forensic Science Institutes (ENFSI) and the Scientific Working Group on DNA analysis methods (SWGDAM). Sci Justice 44:51–53

    Article  PubMed  Google Scholar 

  • Gill P, Fereday L, Morling N, Schneider PM (2006) The evolution of DNA databases - recommendations for new European STR loci. Forensic Sci Int 156:242–244

    Article  CAS  PubMed  Google Scholar 

  • Goodwin W, Linacre A, Hadi S (2011) An introduction to forensic genetics. Wiley Blackwell, Hoboken, NJ

    Google Scholar 

  • Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29:E65–E65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnarsdottir ED, Li M, Bauchet M, Finstermeier K, Stoneking M (2011) High-throughput sequencing of complete human mtDNA genomes from the Philippines. Genome Res 21:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haig SM, Mullins TD, Forsman ED, Trail PW, Wennerberg L (2004) Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv Biol 18:1347–1357

    Article  Google Scholar 

  • Hakki EE, Uz E, Sag A, Atasoy S, Akkaya MS (2003) DNA fingerprinting of Cannabis sativa L. accessions using RAPD and AFLP markers. Forensic Sci Int 136:31

    Article  Google Scholar 

  • Hameed IH, Jebor MA, Kareem MA (2015) Forensic analysis of mitochondrial DNA hypervariable region HVII (encompassing nucleotide positions 37 to 340) and HVIII (encompassing nucleotide positions 438 to 574) and evaluation of the importance of these variable positions for forensic genetic purposes. Afr J Biotechnol 14(5):365–374

    Article  CAS  Google Scholar 

  • Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387:303–314

    Article  CAS  PubMed  Google Scholar 

  • Holland MM, McQuillan MR, O’Hanlon KA (2011) Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat Med J 52:299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn GT, Buga Wan TL, Long CM, Erlich HA (1988) HLA class II antigens and susceptibility to insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 85:6012–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugh H, Fudenberg JRL, Wang A-C, Ferrara GB (1984) Basic immunogenetics, 3rd edn. Oxford University Press, London

    Google Scholar 

  • Irwin J, Just R, Scheible M, Loreille O (2011) Assessing the potential of next generation sequencing technologies for missing persons identification efforts. Forensic Sci Int Genet Suppl Ser 3:447–448

    Article  Google Scholar 

  • Jain T, Shrivastava P, Bansal DD, Dash HR, Trivedi VB (2016) PowerPlex Y23 system: a fast, sensitive and reliable Y-STR multiplex system for forensic and population genetic purpose. J Mol Biomark Diagon 7:3

    Google Scholar 

  • Jedrzejczyk M, Jacewicz R, Kozdraj A, Szram S, Berent J (2010) Application of X-STR loci in forensic genetics. Problem Forensic Sci 82:141–150

    CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79

    Article  CAS  PubMed  Google Scholar 

  • Jeffrys AJ, Brookfield JFY, Semeonff R (1987) Positive identification of a immigration test case using human DNA fingerprints. Nature 317:818–819

    Article  Google Scholar 

  • Jobling M, Gill P (2004) Encoded evidence: DNA in forensic analysis. eNat Rev 5:739–752

    CAS  Google Scholar 

  • Kavlick MF, Lawrence HS, Merritt RT, Fisher C, Isenberg A, Robertson JM, Budowle B (2011) Quantification of human mitochondrial DNA using synthesized DNA strands. J Forensic Sci 56(6):1457–1463

    Article  CAS  PubMed  Google Scholar 

  • Kayser M (2003) The human Y chromosome: introduction into genetics and applications. Forensic Sci Rev 15:78–90

    Google Scholar 

  • Kayser M (2017) Forensic use of Y-chromosome DNA: a general overview. Hum Genet 136:621–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser M, Krawczak M, Excoffier L et al (2001) An extensive analysis of Y-chromosomal microsatellite haplotypes in globally dispersed human populations. Am J Hum Genet 68:990–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser M, Lao O, Anslinger K et al (2005) Significant genetic differentiation between Poland and Germany follows present day political borders, as revealed by Y-chromosome analysis. Hum Genet 117:428–443

    Article  PubMed  Google Scholar 

  • Kayser M, Vermeulen M, Knoblauch H, Schuster H, Krawczak M, Roewer L (2007) Relating two deep rooted pedigrees from Central Germany by high resolution Y-STR haplotyping. Forensic Sci Int Genet 1:125–128

    Article  PubMed  Google Scholar 

  • Kimpton C, Fisher D, Watson S, Adams M, Urquhart A, Lygo J et al (1994) Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. Int J Legal Med 106:302–311

    Article  CAS  PubMed  Google Scholar 

  • Kimpton CP, Oldroyd NJ, Watson SK, Frazier RR, Johnson PE, Millican ES et al (1996) Validation of highly discriminating multiplex short tandem repeat amplification systems for individual identification. Electrophoresis 17:11283–11293

    Article  Google Scholar 

  • Kinra SLP (2006) The use of mitochondrial DNA and short tandem repeat typing in the identification of air crash victims. Ind J Aerospace Med 50:54–65

    Google Scholar 

  • Kircher M, Kelso J (2010) High-throughput DNA sequencing-concepts and limitations. Bioessays 32(6):524–536

    Article  CAS  PubMed  Google Scholar 

  • Kleppe K, Ohtsuka E, Kleppe R et al (1971) Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. J Mol Biol 56(2):341–361

    Article  CAS  PubMed  Google Scholar 

  • Klevan L, Horton L, Carlson DP, Eisenberg AJ (1995) Chemiluminescent detection of DNA probes in forensic analysis. Electrophoresis 16(9):1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Koreth J (1996) Microsatellites and PCR genomic analysis. J Pathol 178:239–248

    Article  CAS  PubMed  Google Scholar 

  • Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ et al (2002) Validation of a 16 locus fluorescent multiplex system. J Forensic Sci 47:773–785

    Article  CAS  PubMed  Google Scholar 

  • Lee JCI, Cole M, Linacre A (2000) Identification of hallucinogenic fungi from the genera Psilocybe and Panaeolus by amplified fragment length polymorphism. Electrophoresis 21:1484–1487

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126:55–62

    Article  PubMed  Google Scholar 

  • Li M, Schonberg A, Schaefer M, Chroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87:237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhao S, Zhang N, Zhang S, Hou Y (2013) Differences of DNA methylation profiles between monozygotic twins’ blood samples. Mol Biol Rep 40:5275–5280

    Article  CAS  PubMed  Google Scholar 

  • Linacre A, Cole M, Lee JCI (2002) Identifying the presence of ‘magic mushrooms’ by DNA profiling. Sci Justice 42:50–54

    Article  CAS  PubMed  Google Scholar 

  • Lygo JE, Johnson PE, Holdaway DJ, Woodroffe S, Whitaker JP, Clayton TM et al (1994) The validation of short tandem repeat (STR) loci for use in forensic casework. Int J Legal Med 107:77–89

    Article  CAS  PubMed  Google Scholar 

  • Machado FB, Medina-Acosta E (2009) Genetic map of human X-linked microsatellites used in forensic practice. Forensic Sci Int Genet 3:202–204

    Article  CAS  PubMed  Google Scholar 

  • Marchi E (2004) Methods developed to identify victims of the World Trade Centre disaster. Am Lab 36:30–36

    Google Scholar 

  • Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meldrum C, Doyle MA, Tothill RW (2011) Next generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 32:177–195

    PubMed  PubMed Central  Google Scholar 

  • Melton T, Holland C, Holland M (2012) Forensic mitochondrial DNA analysis: current practice and future potential. Forensic Sci Rev 24:101–122

    CAS  PubMed  Google Scholar 

  • Mikkelsen M, Frank-Hansen R, Hansen AJ, Morling N (2014) Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics. Forensic Sci Int Genet 12:30–37

    Article  CAS  PubMed  Google Scholar 

  • Ministry of Public Security-China (2012) Proceedings of the 4th National Symposium on Forensic DNA Inspection Technology & 2012 International Symposium on New Advances in Forensic Genetics, Fuzhou, China, December 9–12, 2012

    Google Scholar 

  • Morel C, Arlen F, Jeannet M, Mach B, Tiercy JM (1990) Complete analysis of HLA-DQB1 polymorphism and DR-DQ linkage disequilibrium by oligonucleotide typing. Hum Immunol 29:64–77

    Article  CAS  PubMed  Google Scholar 

  • Morretti TR et al (2001) Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. J Forensic Sci 46:647–660

    Google Scholar 

  • Mostafa EM, Sabri DM, Aly SM (2015) Overviews of “next-generation sequencing”. Res Rep Forensic Med Sci 2015:1–5

    Google Scholar 

  • Mullis KB, Faloona F (1987) Specific synthesis of DNA in vitro via a polymerase chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Mullis KB, Faloona F, Scharf SJ, Saiki RK, Horn GT, Erlich HA (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Quant Biol 51:263–273

    Article  CAS  Google Scholar 

  • Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K et al (2012) The methylomes of six bacteria. Nucleic Acids Res 40:11450–11462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadir E (1996) Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natl Acad Sci U S A 93:6470–6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai CY, Chou SL, Tang TK, Wei YH, Yang CH (1997) Haplotyping of mitochondrial DNA in the D-loop region by PCR: forensic application. J Formosan Assoc 96:73–82

    CAS  Google Scholar 

  • Paliwal A, Vaissiere T, Herceg Z (2010) Quantitative detection of DNA methylation states in minute amounts of DNA from body fluids. Methods 52:242–247

    Article  CAS  PubMed  Google Scholar 

  • Panet A, Khorana HG (1974) The linkage of deoxyribopolynucleotide templates to cellulose and its use in their replication. J Biol Chem 249(16):5213–5221

    CAS  PubMed  Google Scholar 

  • Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L et al (2013) Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7:543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne BAI et al (2013) Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22(2):384–390

    Article  CAS  PubMed  Google Scholar 

  • Phillips C, Gelabert-Besada M, Fernandez-Formoso L, Garcia-Magarinos M, Santos C, Fondevila M, Ballard D, Court DS, Carracedo A, Lareu MV (2014) New turns from old STRs: enhancing the capabilities of forensic short tanden repeat analysis. Electrophoresis 35:3173–3187

    Article  CAS  PubMed  Google Scholar 

  • Pitterl F, Schmidt K, Huber G, Zimmermann B, Delport R, Amory S, Ludes B, Oberacher H, Parson W (2010) Increasing the discrimination power of forensic STR testing by employing high-performance mass spectrometry, as illustrated in indigenous south African and central Asian populations. Int J Legal Med 124:551–558

    Article  PubMed  Google Scholar 

  • Planz JV, Sannes-Lowery KA, Duncan DD, Manalili S, Budowle B, Chakraborty R, Hofstadler SA, Hall TA (2012) Automated analysis of sequence polymorphism in STR alleles by PCR and direct electrospray ionization mass spectrometry. Forensic Sci Int Genet 6:594–606

    Article  CAS  PubMed  Google Scholar 

  • Prinz M, Boll K, Baum HJ, Shaler B (1997) Multiplexing of Y chromosome specific STRs and performance for mixed samples. Forensic Sci Int 85:209–218

    Article  CAS  PubMed  Google Scholar 

  • Quintans B, Alvarez-Iglesias V, Salas A, Phillips C, Lareu MV, Carracedo A (2004) Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. Forensic Sci Int 140(2):251–257

    Article  CAS  PubMed  Google Scholar 

  • Rockenbauer E, Hansen S, Mikkelsen M, Børsting C, Morling N (2014a) Characterization of mutations and sequence variants in the D21S11 locus by next generation sequencing. Forensic Sci Int Genet 8:68–72

    Article  CAS  PubMed  Google Scholar 

  • Rockenbauer E, Hansen S, Mikkelsen M, Borsting C, Morling N (2014b) Characterization of mutations and sequence variants in the D21S11 locus by next generation sequencing. Forensic Sci Int Genet 8:68–72

    Article  CAS  PubMed  Google Scholar 

  • Roewer L (2003) The use of the Y chromosome in forensic genetics - current practices and future perspectives. Int Congr Ser 1239:279–280

    Article  Google Scholar 

  • Roewer L (2009) Y chromosome STR typing in crime casework. Forensic Sci Med Pathol 5:77–84

    Article  CAS  PubMed  Google Scholar 

  • Roewer L, Arnemann J, Spurr NK, Grzeschik KH, Epplen JT (1992) Simple repeat sequences on the human Y chromosome are equally polymorphic as their autosomal counterparts. Hum Genet 89(4):389–394

    Article  CAS  PubMed  Google Scholar 

  • Romeika JM, Yan F (2013) Recent advances in forensic DNA analysis. J Forensic Res S12:001. https://doi.org/10.4172/2157-7145.S12-001

    Article  Google Scholar 

  • Saiki RK, Buga Wan TL, Horn GT, Mullis KB, Erlich HA (1986a) Analysis of enzymatically amplified-globin and HLA-DQA DNA with allele-specific oligonucleotide probes. Nature 324:163–166

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986b) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163–166

    Article  CAS  PubMed  Google Scholar 

  • Saiki R, Chang CA, Levenson CH, Boehm CD, Kazazian RH, Erlich HA (1987) Rapid genetic analysis of enzymatically-amplified DNA with non-radioactive allele-specific oligo-nucleotide probes. Am J Hum Genet 41:A237

    Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third generation sequencing. Hum Mol Genet 19:2

    Article  CAS  Google Scholar 

  • Scheible M, Loreille O, Just R, Irwin J (2014) Short tandem repeat typing on the 454 platform: strategies and considerations for targeted sequencing of common forensic markers. Forensic Sci Int Genet 12:107–109

    Article  CAS  PubMed  Google Scholar 

  • Sheshanna SH, Hegde U, Srinivasaiyer M, Balaraj BM (2014) Review research paper, mitochondrial DNA: a reliable tool in forensic odontology. J Ind Acad Forensic Med 36(4):407–410

    Google Scholar 

  • Shin SH, Yu JS, Park SW, Min GS, Chung KW (2005) Genetic analysis of 18 X-linked short tandem repeat markers in Korean population. Forensic Sci Int 147:35–41

    Article  CAS  PubMed  Google Scholar 

  • Son JY, Lee YS, Choung CM, Lee SD (2002) Polymorphism of nine X chromosomal STR loci in Koreans. Int J Legal Med 116:317–321

    Article  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–527

    Article  CAS  PubMed  Google Scholar 

  • Sparkes R, Kimpton C, Gilbard S, Carne P, Andersen J, Oldroyd N et al (1996a) The validation of a 7- locus multiplex STR test for use in forensic casework. (II), artefacts, casework studies and success rates. Int J Legal Med 109:195–204

    Article  CAS  PubMed  Google Scholar 

  • Sparkes R, Kimpton C, Watson S, Oldroyd N, Clayton T, Barnett L et al (1996b) The validation of a 7- locus multiplex STR test for use in forensic casework. (I), Mixtures, ageing, degradation and species studies. Int J Legal Med 109:186–194

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4:R13

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan KM, Mannucci A, Kimpton CP, Gill P (1993) A rapid and quantitative DNA sex test: fluorescence based PCR analysis of X–Y homologous gene amelogenin. Biotechniques 15:636–641

    CAS  PubMed  Google Scholar 

  • Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1:93–99

    Article  PubMed  Google Scholar 

  • Szibor R, Lautsch S, Plate I, Beck N (2000) Population data on the X chromosome short tandem repeat locus HumHPRTB in two regions of Germany. J Forensic Sci 45:231–233

    Article  CAS  PubMed  Google Scholar 

  • Szibor R, Hering S, Edelmann J (2006) A new Web site compiling forensic chromosome X research is now online. Int J Legal Med 120:252–254

    Article  PubMed  Google Scholar 

  • Tang S, Huang T (2010) Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotechniques 48:287–296

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (1993) Notes on the defunction and nomenclature of tandemly repetitive DNA sequences. In: Pena SDJ (ed) DNA fingerprinting: state of the science. Birkhauser, Basel, pp 21–28

    Chapter  Google Scholar 

  • Thompson JM, Ewing M, Frank W, Pogmiller J, Nolde C et al (2013) Developmental validation of the PowerPlex Y23 system: a single multiplex Y-STR system for casework and database samples. Forensic Sci Int Genet 7(2):240–250

    Article  CAS  PubMed  Google Scholar 

  • Thymann M, Nellemann LJ, Masumba G, Irgens-Moller L, Morling N (1993) Analysis of the locus D1S80 by amplified fragment length polymorphism technique (AMP-FLP): frequency distribution in Danes. Intra and inter laboratory reproducibility of the technique. Forensic Sci Int 60(1-2):47–56

    Article  CAS  PubMed  Google Scholar 

  • Tippett P, Ellis NA (1998) The Xg blood group system: a review. Transfus Med Rev 12(4):233–257

    Article  CAS  PubMed  Google Scholar 

  • Van Geystelen A, Decorte R, Larmuseau MH (2013a) Updating the Y-chromosomal phylogenetic tree for forensic applications based on whole genome SNPs. Forensic Sci Int Genet 7:573–580

    Article  PubMed  CAS  Google Scholar 

  • Van Geystelen A, Decorte R, Larmuseau MH (2013b) AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 14:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Neste C, Vandewoestyne M, Van Criekinge W, Deforce D, Van Nieuwerburgh F (2014) My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing. Forensic Sci Int Genet 9:1–8

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Luo H, Pan X, Liao M, Hou Y (2012) A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Sci Int Genet 6:419–423

    Article  CAS  PubMed  Google Scholar 

  • Warshauer DH, Lin D, Hari K, Jain R, Davis C, LaRue B et al (2013) STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 7:409–417

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  • Willuweit S, Caliebe A, Andersen MM, Roewer L (2011) Y-STR frequency surveying method: a critical reappraisal. Forensic Sci Int Genet 5:84–90

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhao Y, Liu Z, Zhu W, Zhou Y, Zhao Z (2012) Bisulfite genomic sequencing of DNA from dried blood spot microvolume samples. Forensic Sci Int Genet 6:306–309

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Wang Q, Long Q, Ng BL, Swerdlow H, Burton J et al (2009) Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr Biol 19:1453–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genom Proteom Bioinformatics 12:190–197

    Article  Google Scholar 

  • Yoshida K, Yayama K, Hatanaka A, Tamaki K (2011) Efficacy of extended kinship analysis utilizing commercial STR kit in establishing personal identification. Legal Med 13:12–15

    Article  CAS  PubMed  Google Scholar 

  • Zajac P, Oberg C, Ahmadian A (2009) Analysis of short tandem repeats by parallel DNA threading. PLoS One 4:e7823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RTPCR confirmation. Int J Legal Med 124:217–226

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nigam, K., Srivastava, A., Sahoo, S., Dubey, I.P., Tripathi, I.P., Shrivastava, P. (2020). Sequential Advancements of DNA Profiling: An Overview of Complete Arena. In: Shrivastava, P., Dash, H.R., Lorente, J.A., Imam, J. (eds) Forensic DNA Typing: Principles, Applications and Advancements . Springer, Singapore. https://doi.org/10.1007/978-981-15-6655-4_3

Download citation

Publish with us

Policies and ethics