Skip to main content

Latest Updates in Next-Generation Energy Technologies and Systems

  • Chapter
  • First Online:
Principles of Extreme Mechanics (XM) in Design for Reliability (DfR)

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 275 Accesses

Abstract

Latest important trends in the smart and sustainable energy industries are presented in Chap. 5: Latest Updates in Next-Generation Energy Technologies and Systems. Recent issues in the novel silicon-based nanostructure anode design for the emerging Lithium ion battery technology as well as how to enable the thin silicon solar cell design for the next-generation Solar PV (photovoltaics) technology will be discussed in this chapter. In addition, yet another very recent trend in the PV materials (especially with the ever-critical encapsulant polymer layers) with important implications in the silicon solar PV industry will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omar, N., Daowd, M., Bossche, P.V.D., Hegazy, O., Smekens, J., Coosemans, T., Mierlo, J.V.: Rechargeable energy storage systems for plug-in hybrid electric vehicles—assessment of electrical characteristics. Energies 5(8), 2952–2988 (2012)

    Article  Google Scholar 

  2. Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Industr. Electron. 55(6), 2258–2267 (2008)

    Article  Google Scholar 

  3. Saw, L.H., Ye, Y., Tay, A.A.: Integration issues of lithium-ion battery into electric vehicles battery pack. J. Clean. Prod. 113, 1032–1045 (2016)

    Article  Google Scholar 

  4. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  Google Scholar 

  5. Li, J.Y., Xu, Q., Li, G., Yin, Y.X., Wan, L.J., Guo, Y.G.: Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Mater. Chem. Front. 1(9), 1691–1708 (2017)

    Article  Google Scholar 

  6. Lee, S.J., Lee, J.K., Chung, S.H., Lee, H.Y., Lee, S.M., Baik, H.K.: Stress effect on cycle properties of the silicon thin-film anode. J. Power Sourc. 97, 191–193 (2001)

    Article  Google Scholar 

  7. Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4(9), A137–A140 (2001)

    Article  Google Scholar 

  8. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008)

    Article  Google Scholar 

  9. Park, M.H., Kim, M.G., Joo, J., Kim, K., Kim, J., Ahn, S., Cui, Y., Cho, J.: Silicon nanotube battery anodes. Nano Lett. 9(11), 3844–3847 (2009)

    Article  Google Scholar 

  10. Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., Cui, Y.: Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. 109(11), 4080–4085 (2012)

    Article  Google Scholar 

  11. Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2), 1522–1531 (2012)

    Article  Google Scholar 

  12. Ryu, I., Choi, J.W., Cui, Y., Nix, W.D.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59(9), 1717–1730 (2011)

    Article  Google Scholar 

  13. Shelke, M.V., Gullapalli, H., Kalaga, K., Rodrigues, M.T.F., Devarapalli, R.R., Vajtai, R. Ajayan, P.M.: Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life li‐ion battery. Adv. Mater. Interf. 4(10) (2017)

    Google Scholar 

  14. Zhou, X., Yin, Y.X., Wan, L.J., Guo, Y.G.: Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem. Commun. 48(16), 2198–2200 (2012)

    Article  Google Scholar 

  15. Ma, T., Yu, X., Li, H., Zhang, W., Cheng, X., Zhu, W., Qiu, X.: High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries. Nano Lett. 17(6), 3959–3964 (2017)

    Article  Google Scholar 

  16. Ma, H., Cheng, F., Chen, J.Y., Zhao, J.Z., Li, C.S., Tao, Z.L., Liang, J.: Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 19(22), 4067–4070 (2007)

    Article  Google Scholar 

  17. Kennedy, T., Brandon, M., Ryan, K.M.: Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries. Adv. Mater. 28(27), 5696–5704 (2016)

    Article  Google Scholar 

  18. Shim, H.C., Woo, C.S., Hyun, S.: Silicon-carbon nanotube aerogel core-shell nanostructures for lithium-ion batteries with long-cycle life and high capacity. In ECS Meeting Abstracts (no. 3, p. 276). IOP Publishing (2016, September)

    Google Scholar 

  19. Zhang, S., Du, Z., Lin, R., Jiang, T., Liu, G., Wu, X., Weng, D.: Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries. Adv. Mater. 22(47), 5378–5382 (2010)

    Article  Google Scholar 

  20. Yang, H., Huang, S., Huang, X., Fan, F., Liang, W., Liu, X.H., Chen, L.Q., Huang, J.Y., Li, J., Zhu, T., Zhang, S.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12(4), 1953–1958 (2012)

    Article  Google Scholar 

  21. Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.H.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011)

    Article  Google Scholar 

  22. Chang, S.W., Chuang, V.P., Boles, S.T., Ross, C.A., Thompson, C.V.: Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv. Func. Mater. 19(15), 2495–2500 (2009)

    Article  Google Scholar 

  23. Choi, W.K., Liew, T.H., Dawood, M.K., Smith, H.I., Thompson, C.V., Hong, M.H.: Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett. 8(11), 3799–3802 (2008)

    Article  Google Scholar 

  24. Zhao, K., Pharr, M., Wan, Q., Wang, W.L., Kaxiras, E., Vlassak, J.J., Suo, Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159(3), A238–A243 (2011)

    Article  Google Scholar 

  25. Huang, S., Fan, F., Li, J., Zhang, S., Zhu, T.: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61(12), 4354–4364 (2013)

    Article  Google Scholar 

  26. Chen, L., Fan, F., Hong, L., Chen, J., Ji, Y.Z., Zhang, S.L., Zhu, T., Chen, L.Q.: A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes. J. Electrochem. Soc. 161(11), F3164–F3172 (2014)

    Article  Google Scholar 

  27. Zuo, P., Zhao, Y.P.: Phase field modeling of lithium diffusion, finite deformation, stress evolution and crack propagation in lithium ion battery. Extreme Mechan. Lett. 9, 467–479 (2016)

    Article  Google Scholar 

  28. Yang, H., Fan, F., Liang, W., Guo, X., Zhu, T., Zhang, S.: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349–361 (2014)

    Article  Google Scholar 

  29. Lee, S.W., Lee, H.W., Ryu, I., Nix, W.D., Gao, H., Cui, Y.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  30. Tippabhotla, S.K., Radchenko, I., Stan, C.V., Tamura, N., Budiman, A.S.: Enabling the study of stress states using in situ µSXRD in the silicon nanowire anode during electrochemical lithiation in a specially designed Li-ion battery test cell. Proc. Eng. 215, 263–275 (2017)

    Article  Google Scholar 

  31. Ali, I., Tippabhotla, S.K., Radchenko, I., Al-Obeidi, A., Stan, C.V., Tamura, N., Budiman, A.S.: Probing stress states in silicon nanowires during electrochemical lithiation using in situ synchrotron X-ray microdiffraction. Front. Energy Res. 6, 19 (2018)

    Article  Google Scholar 

  32. Budiman, A.S., Nix, W.D., Tamura, N., Valek, B.C., Gadre, K., Maiz, J., Spolenak, R., Patel, J.R.: Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl. Phys. Lett. 88(23), 233515 (2006)

    Google Scholar 

  33. Budiman, A.S., Hau-Riege, C.S., Baek, W.C., Lor, C., Huang, A., Kim, H.S., Neubauer, G., Pak, J., Besser, P.R., Nix, W.D.: Electromigration-induced plastic deformation in Cu interconnects: effects on current density exponent, n, and implications for EM reliability assessment. J. Electron. Mater. 39(11), 2483–2488 (2010)

    Article  Google Scholar 

  34. Budiman, A.S., Besser, P.R., Hau-Riege, C.S., Marathe, A., Joo, Y.C., Tamura, N., Patel, J.R., Nix, W.D.: Electromigration-induced plasticity: Texture correlation and implications for reliability assessment. J. Electron. Mater. 38(3), 379–391 (2009)

    Article  Google Scholar 

  35. Budiman, A.S., Shin, H.A.S., Kim, B.J., Hwang, S.H., Son, H.Y., Suh, M.S., Chung, Q.H., Byun, K.Y., Tamura, N., Kunz, M., Joo, Y.C.: Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits. Microelectron. Reliab. 52(3), 530–533 (2012)

    Article  Google Scholar 

  36. Kim, B.J., Kim, J.H., Hwang, S.H., Budiman, A.S., Son, H.Y., Byun, K.Y., Tamura, N., Kunz, M., Kim, D.I., Joo, Y.C.: Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Electron. Mater. 41(4), 712–719 (2012)

    Article  Google Scholar 

  37. Radchenko, I., Tippabhotla, S.K., Tamura, N., Budiman, A.S.: Probing phase transformations and microstructural evolutions at the small scales: Synchrotron X-ray microdiffraction for advanced applications in 3D IC (integrated circuits) and solar PV (photovoltaic) devices. J. Electron. Mater. 45(12), 6222–6232 (2016)

    Article  Google Scholar 

  38. Budiman, A.S., Lee, G., Burek, M.J., Jang, D., Han, S.M.J., Tamura, N., Kunz, M., Greer, J.R., Tsui, T.Y.: Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 538, 89–97 (2012)

    Article  Google Scholar 

  39. Budiman, A.S., Han, S.M., Li, N., Wei, Q.M., Dickerson, P., Tamura, N., Kunz, M., Misra, A.: Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue x-ray microdiffraction. J. Mater. Res. 27(3), 599–611 (2012)

    Article  Google Scholar 

  40. Kim, Y., Budiman, A.S., Baldwin, J.K., Mara, N.A., Misra, A., Han, S.M.: Microcompression study of Al-Nb nanoscale multilayers. J. Mater. Res. 27(3), 592–598 (2012)

    Article  Google Scholar 

  41. Budiman, A.S., Narayanan, K.R., Li, N., Wang, J., Tamura, N., Kunz, M., Misra, A.: Plasticity evolution in nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 635, 6–12 (2015)

    Article  Google Scholar 

  42. Budiman, A.S., Illya, G., Handara, V., Caldwell, W.A., Bonelli, C., Kunz, M., Tamura, N., Verstraeten, D.: Enabling thin silicon technologies for next generation c-Si solar PV renewable energy systems using synchrotron X-ray microdiffraction as stress and crack mechanism probe. Sol. Energy Mater. Sol. Cells 130, 303–308 (2014)

    Article  Google Scholar 

  43. Tippabhotla, S.K., Radchenko, I., Song, W.J.R., Illya, G., Handara, V., Kunz, M., Tamura, N., Tay, A.A., Budiman, A.S.: From cells to laminate: Probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations. Prog. Photovoltaics Res. Appl. 25(9), 791–809 (2017)

    Article  Google Scholar 

  44. Handara, V.A., Radchenko, I., Tippabhotla, S.K., Narayanan, K.R., Illya, G., Kunz, M., Tamura, N., Budiman, A.S.: Probing stress and fracture mechanism in encapsulated thin silicon solar cells by synchrotron X-ray microdiffraction. Sol. Energy Mater. Sol. Cells 162, 30–40 (2017)

    Article  Google Scholar 

  45. Kunz, M., Tamura, N., Chen, K., MacDowell, A.A., Celestre, R.S., Church, M.M., Fakra, S., Domning, E.E., Glossinger, J.M., Kirschman, J.L., Morrison, G.Y.: A dedicated superbend X-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source. Rev. Sci. Inst. 80(3), 035108 (2009)

    Google Scholar 

  46. MacDowell, A.A., Celestre, R.S., Tamura, N., Spolenak, R., Valek, B., Brown, W.L., Bravman, J.C., Padmore, H.A., Batterman, B.W., Patel, J.R.: Submicron X-ray diffraction. Nucl. Instrum. Methods Phys. Res., Sect. A 467, 936–943 (2001)

    Article  Google Scholar 

  47. Chen, X., Dejoie, C., Jiang, T., Ku, C.S., Tamura, N.: Quantitative microstructural imaging by scanning Laue x-ray micro-and nanodiffraction. MRS Bull. 41(6), 445–453 (2016)

    Article  Google Scholar 

  48. Tamura, N.: XMAS: A versatile tool for analyzing synchrotron X-ray microdiffraction data. In Strain and dislocation gradients from diffraction: Spatially-Resolved Local Structure and Defects (pp. 125–155) (2014)

    Google Scholar 

  49. Launey, M.E., Ritchie, R.O.: On the fracture toughness of advanced materials. Adv. Mater. 21(20), 2103–2110 (2009)

    Article  Google Scholar 

  50. Sander, M., Henke, B., Schwarz, H., Dietrich, S., Schweizer, S., Ebert, M., Bagdahn, J.: Characterization of PV modules by combining results of mechanical and electrical analysis methods. In Reliability of Photovoltaic Cells, Modules, Components, and Systems III (Vol. 7773, p. 777308). International Society for Optics and Photonics (2010, August)

    Google Scholar 

  51. Wendt, J., Träger, M., Mette, M., Pfennig, A., Jäckel, B.: The link between mechanical stress induced by soldering and micro damages in silicon solar cells. In 24th European Photovoltaic Solar Energy Conference (pp. 3420–3423) (2009, September)

    Google Scholar 

  52. Gabor, A.M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., Felton, L., Davis, M., Atchley, B,. Williams, T.: Soldering induced damage to thin Si solar cells and detection of cracked cells in modules. In 21st European Photovoltaic Solar Energy Conference (pp. 4–8) (2006, September)

    Google Scholar 

  53. Nieland, S., Baehr, M., Boettger, A., Ostmann, A., Reichl, H.: Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells. In 22th European Photovoltaic Solar Energy Conference, Milan, Italy, September (2007, September)

    Google Scholar 

  54. Lin, K.M., Lee, Y.H., Wang, L.K., Chen, L.W., Yang, S.Y., Chen, Y.C., Liu, D.C., Huang, M.Y., Wu, Z.C., Chen, C.P.: Electroluminescence observation of microcrack growth behavior of crystalline silicon solar modules fabricated by hot-air soldering technology. In International Journal of Modern Physics: Conference Series (Vol. 6, pp. 43–48). World Scientific Publishing Company (2012)

    Google Scholar 

  55. Demant, M., Glatthaar, M., Haunschild, J., Rein, S.: Analysis of luminescence images applying pattern recognition techniques. In 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion (pp. 1078–1082) (2010)

    Google Scholar 

  56. Haunschild, J., Glatthaar, M., Demant, M., Nievendick, J., Motzko, M., Rein, S., Weber, E.R.: Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production. Sol. Energy Mater. Sol. Cells 94(12), 2007–2012 (2010)

    Article  Google Scholar 

  57. McMillan, W., Trupke, T., Weber, J.W., Wagner, M., Mareck, U., Chou, Y.C., Wong, J.: In-line monitoring of electrical wafer quality using photoluminescence imaging. 25th EPVSEC/5th WCPEC, Valencia, Spain, pp. 1346–1351 (2010)

    Google Scholar 

  58. Tamura, N., MacDowell, A.A., Spolenak, R., Valek, B.C., Bravman, J.C., Brown, W.L., Celestre, R.S., Padmore, H.A., Batterman, B.W., Patel, J.R.: Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J. Synchrotron Radiat. 10(2), 137–143 (2003)

    Article  Google Scholar 

  59. Budiman, A.S., Illya, G., Handara, V., Caldwell, W.A., Bonelli, C., Kunz, M., Tamura, N. and Verstraeten, D.: Enabling thin silicon technologies for next generation c-Si solar PV renewable energy systems using synchrotron X-ray microdiffraction as stress and crack mechanism probe. Solar Energy Mater. Solar Cells 130, 303–308 (2014)

    Google Scholar 

  60. Meier, R., Pander, M., Klengel, R., Dietrich, S., Klengel, S., Ebert, M., Bagdahn, J.: Reduction of soldering induced stresses in solar cells by microstructural optimization of copper-ribbons. In Reliability of Photovoltaic Cells, Modules, Components, and Systems IV (Vol. 8112, p. 811206). International Society for Optics and Photonics (2011, September)

    Google Scholar 

  61. Kim, B.J., Kim, J.H., Hwang, S.H., Budiman, A.S., Son, H.Y., Byun, K.Y., Tamura, N., Kunz, M., Kim, D.I., Joo, Y.C.: Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Elect. Mater. 41(4), 712–719 (2012)

    Google Scholar 

  62. Handara, V.A., Radchenko, I., Tippabhotla, S.K., Narayanan, K.R., Illya, G., Kunz, M., Tamura, N., Budiman, A.S.: Probing stress and fracture mechanism in encapsulated thin silicon solar cells by synchrotron X-ray microdiffraction. Solar Energy Materials and Solar Cells162, 30–40 (2017)

    Google Scholar 

  63. Chen, K., Tamura, N., Tang, W., Kunz, M., Chou, Y.C., Tu, K.N., Lai, Y.S.: High precision thermal stress study on flip chips by synchrotron polychromatic x-ray microdiffraction. J. Appl. Phys. 107(6), 063502 (2010)

    Google Scholar 

  64. Chiu, T.C., Zeng, K., Stierman, R., Edwards, D., Ano, K.: Effect of thermal aging on board level drop reliability for Pb-free BGA packages. In 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No. 04CH37546) (Vol. 2, pp. 1256–1262). IEEE (2004, June)

    Google Scholar 

  65. Mei, Z., Ahmad, M., Hu, M., Ramakrishna, G.: Kirkendall voids at Cu/solder interface and their effects on solder joint reliability. In Proceedings Electronic Components and Technology, 2005. ECTC'05. (pp. 415–420). IEEE (2005, May)

    Google Scholar 

  66. Kim, B.J., Lim, G.T., Kim, J., Lee, K., Park, Y.B., Lee, H.Y., Joo, Y.C.: Intermetallic compound growth and reliability of Cu pillar bumps under current stressing. J. Electron. Mater. 39(10), 2281–2285 (2010)

    Article  Google Scholar 

  67. Gabor, A.M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., Felton, L., Davis, M., Atchley, B., Williams, T.: Soldering induced damage to thin Si solar cells and detection of cracked cells in modules. In 21st European Photovoltaic Solar Energy Conference (pp. 4-8) (2006, September)

    Google Scholar 

  68. Sander, M., Dietrich, S., Pander, M., Ebert, M., Bagdahn, J.: Systematic investigation of cracks in encapsulated solar cells after mechanical loading. Sol. Energy Mater. Sol. Cells 111, 82–89 (2013)

    Article  Google Scholar 

  69. Sander, M., Dietrich, S., Pander, M., Schweizer, S., Ebert, M., Bagdahn, J.: Investigations on crack development and crack growth in embedded solar cells. In Reliability of Photovoltaic Cells, Modules, Components, and Systems IV (Vol. 8112, p. 811209). International Society for Optics and Photonics (2011, September)

    Google Scholar 

  70. Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., Bjørneklett, B.: The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energy Mater. Sol. Cells 95(4), 1131–1137 (2011)

    Article  Google Scholar 

  71. Kajari-Schröder, S., Kunze, I., Eitner, U., Köntges, M.: Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests. Sol. Energy Mater. Sol. Cells 95(11), 3054–3059 (2011)

    Article  Google Scholar 

  72. Dietrich, S., Pander, M., Sander, M., Schulze, S.H., Ebert, M.: Mechanical and thermo-mechanical assessment of encapsulated solar cells by finite-element-simulation. Proceedings of SPIE–The International Society for Optical Engineering (2008)

    Google Scholar 

  73. Ketola, B., McIntosh, K.R., Norris, A., Tomalia, M.K.: Silicones for photovoltaic encapsulation. In 23rd European Photovoltaic Solar Energy Conference (pp. 2969–2973) (2008, September)

    Google Scholar 

  74. Hurter, W., Oosthuizen, G., Janse van Rensburg, N.: Investigating the effects of composite materials in solar cell encapsulation. International Conference on Competitive Manufacturing (2013)

    Google Scholar 

  75. Mickiewicz, R., Li, B., Doble, D., Christian, T., Lloyd, J., Stokes, A., Voelker, C., Winter, M., Ketola, B., Norris, A., Shephard, N.: Effect of encapsulation modulus on the response of PV modules to mechanical stress. In Proceedings of the 26th European Photovoltaic Solar Energy Conference (2011, September)

    Google Scholar 

  76. Narayanan, K.R. et al.: Proc. Eng. 139, 76 (2016)

    Google Scholar 

  77. Budiman, A.S.: Enabling thin silicon technology. Science Highlights, June (2013)

    Google Scholar 

  78. MacDowell, A.A., Celestre, R.S., Tamura, N., Spolenak, R., Valek, B., Brown, W.L., Bravman, J.C., Padmore, H.A., Batterman, B.W., Patel, J.R.: Submicron X-ray diffraction. Nucl. Instr. Methods Phys. Res. Sect. A: Accelerat. Spectro. Detect. Assoc. Equip. 467, 936–943 (2001)

    Google Scholar 

  79. Tamura, N., Celestre, R.S., MacDowell, A.A., Padmore, H.A., Spolenak, R., Valek, B.C., Meier Chang, N., Manceau, A., Patel, J.R.: Submicron x-ray diffraction and its applications to problems in materials and environmental science. Rev. Sci. Instrum. 73(3), 1369–1372 (2002)

    Article  Google Scholar 

  80. Tamura, N., MacDowell, A.A., Spolenak, R., Valek, B.C., Bravman, J.C., Brown, W.L., Celestre, R.S., Padmore, H.A., Batterman, B.W., Patel, J.R.: Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J. Synchrot. Radiat. 10(2), 137–143 (2003)

    Google Scholar 

  81. Tamura, N., Padmore, H.A., Patel, J.R.: High spatial resolution stress measurements using synchrotron based scanning X-ray microdiffraction with white or monochromatic beam. Mater. Sci. Eng., A 399(1–2), 92–98 (2005)

    Article  Google Scholar 

  82. Tamura, N., Kunz, M., Chen, K., Celestre, R.S., MacDowell, A.A., Warwick, T.: A superbend X-ray microdiffraction beamline at the advanced light source. Mater. Sci. Eng., A 524(1–2), 28–32 (2009)

    Article  Google Scholar 

  83. Budiman, A.S., Nix, W.D., Tamura, N., Valek, B.C., Gadre, K., Maiz, J., Spolenak, R., Patel, J.R.: Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl. Phys. Lett. 88(23), 233515 (2006)

    Google Scholar 

  84. Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., Nix, W.D.: A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction. Acta Mater. 56(3), 602–608 (2008)

    Article  Google Scholar 

  85. Feng, G., Budiman, A.S., Nix, W.D., Tamura, N., Patel, J.R.: Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction. J. Appl. Phys. 104(4), 043501 (2008)

    Google Scholar 

  86. Chen, K., Tamura, N., Valek, B.C., Tu, K.N.: Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction. J. Appl. Phys. 104(1), 013513 (2008)

    Google Scholar 

  87. Budiman, A.S., Besser, P.R., Hau-Riege, C.S., Marathe, A., Joo, Y.C., Tamura, N., Patel, J.R., Nix, W.D.: Electromigration-induced plasticity: texture correlation and implications for reliability assessment. J. Elect. Mater. 38(3), 379–391 (2009)

    Google Scholar 

  88. Budiman, A.S., Hau-Riege, C.S., Baek, W.C., Lor, C., Huang, A., Kim, H.S., Neubauer, G., Pak, J., Besser, P.R., Nix, W.D.: Electromigration-induced plastic deformation in Cu interconnects: effects on current density exponent, n, and implications for EM reliability assessment. J. Elect. Mater. 39(11), 2483–2488 (2010)

    Google Scholar 

  89. Budiman, A.S., Li, N., Wei, Q., Baldwin, J.K., Xiong, J., Luo, H., Trugman, D., Jia, Q.X., Tamura, N., Kunz, M., Chen, K.: Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 519(13), 4137–4143 (2011)

    Google Scholar 

  90. Budiman, A.S., Han, S.M., Li, N., Wei, Q.M., Dickerson, P., Tamura, N., Kunz, M., Misra, A.: Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue x-ray microdiffraction. J. Mater. Res. 27(3), 599–611 (2012)

    Google Scholar 

  91. Budiman, A.S., Shin, H.A.S., Kim, B.J., Hwang, S.H., Son, H.Y., Suh, M.S., Chung, Q.H., Byun, K.Y., Tamura, N., Kunz, M., Joo, Y.C.: Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits. Microelect. Reliab. 52(3), 530–533 (2012)

    Google Scholar 

  92. Kim, B.J., Kim, J.H., Hwang, S.H., Budiman, A.S., Son, H.Y., Byun, K.Y., Tamura, N., Kunz, M., Kim, D.I., Joo, Y.C.: Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Elect. Mater. 41(4), 712–719 (2012)

    Google Scholar 

  93. Budiman, A.S., Lee, G., Burek, M.J., Jang, D., Han, S.M.J., Tamura, N., Kunz, M., Greer, J.R., Tsui, T.Y.: Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng. A 538, 89–97 (2012)

    Google Scholar 

  94. Budiman, A.S., Narayanan, K.R., Li, N., Wang, J., Tamura, N., Kunz, M., Misra, A.: Plasticity evolution in nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng. A 635, 6–12 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Budiman, A.S. (2022). Latest Updates in Next-Generation Energy Technologies and Systems. In: Principles of Extreme Mechanics (XM) in Design for Reliability (DfR). Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-6720-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6720-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6719-3

  • Online ISBN: 978-981-15-6720-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics