Skip to main content

Plant Biotechnology for Agricultural Sustainability

  • Chapter
  • First Online:
Resources Use Efficiency in Agriculture

Abstract

Plant biotechnology is an essential tool that allows agriculture improvement by increasing food production through tissue culture, molecular biology, and crop improvement. At present, agriculture is facing many problems that affect food production seriously; some of these problems are degradation of soils, salinity, contamination with heavy metals and hydrocarbons, drought, desertification, deforestation, and one of the solutions is biotechnology. This chapter will discuss aspects related to sustainable agriculture and food challenge, plant biotechnology, and plant biotechnology and sustainability. First, the incidence of agriculture is analyzed, on the one hand, in the reduction of hunger, and on the other, in the degradation of the environment, which can only be resolved through a sustainable model. Secondly, the most relevant applications of modern biotechnology in the accelerated propagation of plants, germplasm conservation, and genetic improvement are described. Next, both elements are linked, and it is analyzed how biotechnology can contribute to sustainability through modern technologies. The contribution of modern biotechnologies to sustainability in agriculture is illustrated through the presentation of examples of work done with the genus Lupinus. This genus comprises species useful for sustainable agriculture, which serve as a source of proteins and secondary metabolites, as well as in crop rotation. This chapter shows some of the results achieved in the multiplication and in vitro conservation of species from Lupinus, as examples of the application of biotechnology with an environment friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-dichloro phenoxy acetic acid

AFLP:

Amplified fragment length polymorphism

BA:

Benzyladenine

Bt:

Bacillus thuringiensis

CH:

Casein hydrolysate

CRISPR:

Clustered regulatory interspaced short palindromic repeats

DCR:

Douglas-fir cotyledon revised

g l−1:

Grams per liter

GM:

Genetic modified

GMCs:

Genetically modified crops

GMOs:

Genetically modified organisms

H2SO4:

Sulfuric acid

IAA:

Indoleacetic acid

IBA:

Indol-3-butyric acid

ITS2:

Internal transcribed spacer 2

kg ha−1:

Kilograms per hectare

Kin:

Kinetin

mg l−1:

Milligrams per liter

MS:

Murashige and Skoog

NAA:

Naphthaleneacetic acid

PCR:

Polymerase chain reaction

PPT:

Glufosinate ammonium

RAPD:

Randomly amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RNA:

Ribonucleic acid

SI:

Sustainable intensification

SSN:

Sequence-specific nucleases

SSRs:

Simple sequence repeats

TAL:

Transcription-activator-like

TALEN:

Transcription-activator-like effector nucleases

TDZ:

Thidiazuron

ZFN:

Zinc-finger nucleases

μg l−1:

Micrograms per liter

References

  • Abdelsalam A, Chowdhury K, El-Bakry A (2018) Efficient adventitious morphogenesis from in vitro cultures of the medicinal plant Cymbopogon schoenanthus. Plant Tissue Cult Biotechnol 28(2):147–160

    Article  Google Scholar 

  • Abraham A (2009) Agricultural biotechnology research and development in Ethiopia. Afr J Biotechnol 825(29):7196–7204

    Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM et al (2016) C2c2 is a single component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:5573–5673

    Article  CAS  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adenle AA, Morris EJ, Govindan P (2013) Status of development, regulation and adoption of GM agriculture in Africa: Views and positions of stakeholder groups. Food Policy 42:159–166

    Article  Google Scholar 

  • Altieri MA (2003) Dimensiones éticas de la crítica agroecológica a la biotecnología agrícola. Acta Bioethica Año 9(1):47–61

    Google Scholar 

  • Altieri MA, Nicholls CI (2017) Agroecology: a brief account of its origins and currents of thought in Latin America. Agroecol Sustain Food Syst 41(3-4):231–237

    Article  Google Scholar 

  • Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13

    Article  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez-Matías N, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  PubMed  CAS  Google Scholar 

  • Arif M, Opit G, Mendoza-Yerbafria A, Dobhal S, Li Z, Kučerová Z, Ochoa-Corona FM (2015) Array of synthetic oligonucleotides to generate unique multi-target artificial positive controls and molecular probe-based discrimination of Liposcelis species. PLoS One 10(6):e0129810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Awais MA, Pervez A, Yaqub R, Sarwar F, Siraj S (2010) Current status of biotechnology in health. Am Eurasian J Agric Environ Sci 7(2):210–220

    CAS  Google Scholar 

  • Bagwan JD, Patil SJ, Mane AS, Kadam VV, Vichare S (2010) Genetically modified crops: food of the future. Int J Adv Biotechnol Res 1(1):21–30

    Google Scholar 

  • Bahadur S, Verma SK, Prasad SK, Madane AJ, Maurya SP, Gaurav VVK, Sihag SK (2015) Eco-friendly weed management for sustainable crop production-a review. J Crop Weed 11(1):181–189

    Google Scholar 

  • Baird V, Abbott A, Ballard R, Sosinski B, Rajapakse S (1997) DNA diagnostics in horticulture. In: Current topics in plant molecular biology: technology transfer of plant biotechnology. CRC Press, Boca Raton, pp 111–130

    Google Scholar 

  • Balwinder SS, Singh GV, Kaur AN (2011) An efficient plant regeneration protocol from callus cultures of Citrus jambhiri Lush. Physiol Mol Biol Plants 17(2):161–169

    Article  Google Scholar 

  • Baranski R, Klimek-Chodacka M, Lukasiewicz A (2019) Approved genetically modified (GM) horticultural plants: A 25-year perspective. Folia Hortic 31(1):3–49

    Article  Google Scholar 

  • Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092

    Article  PubMed  CAS  Google Scholar 

  • Basu SK, Dutta M, Goyal A, Bhowmik PK, Kumar J, Nandy S, Scagliusi SM, Prasad R (2010) Is genetically modified crop the answer for the next green revolution? GM Crops 1(2):68–79

    Article  PubMed  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Benor S, Zhang M, Wang Z, Zhang H (2008) Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J Genet Genomics 35(6):373–379

    Article  PubMed  CAS  Google Scholar 

  • Bestelmeyer BT, Okin GS, Duniway MC, Archer SR, Sayre NF, Williamson JC, Herrick JE (2015) Desertification, land use, and the transformation of global drylands. Front Ecol Environ 13(1):28–36

    Article  Google Scholar 

  • Boccia F, Sarnacchiaro P (2015) Genetically modified foods and consumer perspective. Recent Pat Food Nutr Agric 7:28–34

    Article  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  PubMed  CAS  Google Scholar 

  • Bøhn T, Cuhra M, Traavik T, Sanden M, Fagan J, Primicerio R (2014) Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans. Food Chem 153:207–215

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage mapping man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bouis H, Saltzman A, Low J, Ball AM, Covic MN (2017) An overview of the landscape and approach for biofortification in Africa. Afr J Food Agric Nutr Dev 17:11848–11864

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2018) GM crops: global socio-economic and environmental impacts 1996–2006. PG Economics Ltd, Dorchester, p 204

    Google Scholar 

  • Brundtland GH (1987) Our common future. Oxford University Press, Oxford, p 300

    Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542:237–241

    Article  PubMed  CAS  Google Scholar 

  • Buttel FH (2003) Internalising the societal costs of agricultural production. Plant Physiol 133:1656–1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calderón-Cortés N, Quesada M, Cano-Camacho H, Zavala-Páramo G (2010) A simple and rapid method for DNA isolation from xylophagous insects. Int J Mol Sci 11(12):5056–5064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carman JA, Vlieger HR, Ver Steeg LJ, Sneller VE, Robinson GW, Clinch-Jones CA, Haynes JI, Edwards JW (2013) A long-term toxicology study on pigs fed a combined genetically modified (GM) soy and GM maize diet. J Org Syst 8(1):38–54

    Google Scholar 

  • Casierra F, Aguilar OE (2007) Estrés por aluminio en plantas: Reacciones en el suelo, síntomas en vegetales y posibilidades de corrección. Una revisión. Rev Colomb Cienc Hortic 1(2):246–257

    Article  Google Scholar 

  • CERA (2010) GM crop database. ILSI Research Foundation, Washington DC

    Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, Li Y, Gu T, Wang R, Lin X, Deng Z et al (2018) A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic Res 5:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiruvella KK, Mohammed A, Dampuri G, Gopal RG (2011) In vitro shoot regeneration and control of shoot tip necrosis in tissue cultures of Soymida febrifuga (Roxb.) A. Juss. Plant Tissue Cult Biotechnol 21(1):11–25

    Article  Google Scholar 

  • CINU (2011) Alimentación. CINU. http://www.cinu.org.mx/temas.htm

  • Conway GR, Barbier EB (1990) After the green revolution. Sustainable agriculture for development. Earthscan, London, p 210

    Google Scholar 

  • Dalgaar T, Hutchings NJ, Porter JR (2003) Agroecology, scaling and interdisciplinarity. Agric Ecosyst Environ 100:39–51

    Article  Google Scholar 

  • Dash A, Kundu D, Das M, Bose D, Adak S, Banerjee R (2016) Food biotechnology: a step towards improving nutritional quality of food for Asian countries. Recent Pat Biotechnol 10:43–57

    Article  PubMed  CAS  Google Scholar 

  • DaSilva EJ (1998) Biotechnology, developing countries and globalization. World J Microbiol Biotechnol 14:463–486

    Article  Google Scholar 

  • De la Torre J (2008) Aspectos éticos del uso de los organismos modificados genéticamente (OMG) en la agricultura y alimentación. ICADE 73:141–169

    Google Scholar 

  • Dehmer KJ, Hammer K (2004) Taxonomic status and geographic provenance of germplasm accessions in the Solanum nigrum L. complex: AFLP Data. Genet Resour Crop Evol 51:551–558

    Article  CAS  Google Scholar 

  • Dhlamini Z, Spillane C, Moss JP, Ruane J, Urquia N, Sonnino A (2005) Status of research and application of crop biotechnologies in developing countries. Food and Agriculture Organization of the United Nations Natural Resources Management and Environment Department, Rome, p 65

    Google Scholar 

  • Dixon GR, Tilson EL (2010) Soil microbiology and sustainable crop production. Springer, Dordrecht, p 435

    Book  Google Scholar 

  • Dobbs T, Pretty JN (2004) Agri-environmental stewardship schemes and multifunctionality. Rev Agric Econ 26:220–237

    Article  Google Scholar 

  • Dominguez MS, Jiménez LG, Rosales CG, Quiñones CV, Delgadillo SD, Mireles SJ, Pérez EM (2008) El cultivo in vitro como herramienta para el aprovechamiento, mejoramiento y conservación de especies del género Agave. Investig Cienc 41:53–62

    Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  CAS  PubMed  Google Scholar 

  • Dreger M, Mól R, Deja A, Raj E, Mańkowska G, Wielgus K (2019) Improved plant regeneration in callus cultures of Sorghum bicolor (L.) Moench. In Vitro Cell Dev Biol Plant 55:190–198

    Article  CAS  Google Scholar 

  • Du D, Jin R, Guo J, Zhang F (2019) Construction of marker-free genetically modified maize using a heat-inducible auto-excision vector. Gene 10(374):1–17

    Article  CAS  Google Scholar 

  • Dyllick T, Hockerts K (2002) Beyond the business case for corporate sustainability. Business Strat Environ 11(2):130–141

    Article  Google Scholar 

  • EA (2005) Assessment of win–win case studies of resource management in agriculture. Bristol, EA and English Nature, p 132

    Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Mcneil MD (2001) Implementation of markers in Australian wheat breeding. Crop Pasture Sci 52(12):1349–1356

    Article  CAS  Google Scholar 

  • Espinoza EFM (2018) Biotecnología para la agricultura moderna. Ciencia 69(4):1–6

    Google Scholar 

  • FAO (2001) Action against undernutrition and poverty. Redirecting food assistance to those who need it most. In: The state of food insecurity in the world. http://www.fao.org/docrep/003/y1500e/y1500e05.htm#P0_0

  • FAO (2011) Biotechnologies for agricultural development. FAO, Rome, p 569

    Google Scholar 

  • FAO (2014a) The water-energy-food nexus: a new approach in support of food security and sustainable agriculture. FAO, Rome, p 28

    Google Scholar 

  • FAO (2014b) Anuario Estadístico: La alimentación y la agricultura en América Latina y el Caribe. https://www.fao.org/3/a-i3592s.pdf

  • FAO (2017) El futuro de la alimentación y la agricultura: Tendencias y desafíos. p 52, www.fao.org/publications

  • FAO-FIDA-PMA (2014) El estado de la inseguridad alimentaria en el mundo 2014: fortalecimiento de un entorno favorable para la seguridad alimentaria y la nutrición. FAO, Roma, p 62

    Google Scholar 

  • Farooq S, Iqbal N, Arif M (1996) Detection of genetic variability in basmati and non-basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD). International Atomic Energy Agency, Vienna (Austria); Food and Agriculture Organization of the United Nations, Rome (Italy); Proceedings series, p 748

    Google Scholar 

  • Figueroa-Rodríguez MI (2016) Efecto de especies nativas y silvestres del género Lupinus sobre la fertilidad del suelo agrícola. Maestría en Ciencias en Desarrollo de Productos Bióticos, CeProBi-IPN, México, p 107

    Google Scholar 

  • Firbank LG, Rothery P, May MJ, Clark SJ, Scott RJ, Stuart RC, Boffey CWH, Brooks DR, Champion GT, Haughton AJ, Hawes C, Heard MS, Dewar AM, Perry JN, Squire GR (2006) Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops. Biol Lett 2:140–143

    Article  PubMed  CAS  Google Scholar 

  • Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B 363:777–787

    Article  Google Scholar 

  • Fornasini M, Castro J, Villacres E, Narvaez L, Villamar M, Baldeon ME (2012) Hypoglycemic effect of Lupinus mutabilis in healthy volunteers and subjects with dysglycemia. Nutr Hosp 27(2):425–433

    PubMed  CAS  Google Scholar 

  • García-Gonzáles R, Quiroz K, Carrasco B, Caligari P (2010) Plant tissue culture: current status, opportunities and challenges. Cien Investig Agrar 37(3):5–30

    Article  Google Scholar 

  • Gätjens-Boniche O, Acuña-Matamoros CL, Montero-Carmona W, Díaz C, Torres S (2018) Vanilla mass propagation and protocormic callus formation from root tips. PoliBotánica 45:157–180

    Google Scholar 

  • Gerszberg A, Grzegorczyk-Karolak I (2019) Influence of selected antibiotics on the tomato regeneration in in vitro cultures. Notulae Bot Hortic Agrobot Cluj-Napoca 47(3):558–564

    CAS  Google Scholar 

  • Gliessman SR (2005) Agroecology and agroecosystems. In: Pretty J (ed) The Earthscan reader in sustainable agriculture. Earthscan, London

    Google Scholar 

  • Gliessman SR (2013) Agroecología: plantando las raíces de la resistencia. Agroecología 8(2):19–26

    Google Scholar 

  • Godfray H, Charles J, Beddington JR, Crute IR, Haddad L, Lawrence D et al (2010a) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  PubMed  CAS  Google Scholar 

  • Godfray H, Charles J, Crute IR, Haddad L, Lawrence D, Muir JF et al (2010b) The future of the global food system. Philos Trans R Soc B Biol Sci 365(1554):2769–2777

    Article  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/ food security debate. J Exp Bot 60:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir and sugar pine. Plant Cell Rep 4:177–179

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U (2011) Global food losses and food waste. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gutiérrez DF, Ruiz RM, Xoconostle BC (2015) Estado actual de los cultivos genéticamente modificados en México y su contexto internacional. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, p 194

    Google Scholar 

  • Haberl H, Schulz NB, Plutzar C, Erb HK, Krausmann F, Loib W, Moser D, Sauberer N, Weisz H, Zechmeister G, Zulka P (2004) Human appropriation of net primary production and species diversity in agricultural landscapes. Agric Ecosyst Environ 102:213–218

    Article  Google Scholar 

  • Habets M, van Hove L, van Est R (2019) Genome editing in plants and crops – Towards a modern biotechnology policy focused on differences in risks and broader considerations. Rathenau Institute, The Hague, p 48

    Google Scholar 

  • Hammschlag F, Ritchie D, Werner D, Hashmil G, Krusberg L, Meyer R, Huettel R (1995) In vitro selection of disease resistance in fruit trees. Acta Hortic 392:19–26

    Article  Google Scholar 

  • Hancock JM (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: Goldstein DB, Schlötterer C (eds) Microsatellites, evolution and applications. Oxford University Press, Oxford, pp 1–10

    Google Scholar 

  • Hans BV, Colaco VM (2019) Sustainable agriculture and economic growth. JETIR 6(1):483–512

    Google Scholar 

  • Héctor E, Pérez-Álvarez S, Moreira R, Millet B (2016) Perspectivas futuras e impacto social de las biotecnologías vegetales. Alternativas 17(2):44–51

    Article  Google Scholar 

  • Héctor E, Millet B, Torres A, Fosado O (2018) Agricultura en Sudamérica: La huella ecológica y el futuro de la producción agrícola. Rev Chakiñan 5:90–101

    Google Scholar 

  • Heinemann J (2009) Hope not hype: The future of agriculture guided by the international assessment of agricultural knowledge, science and technology for development. Third World Network, Penang

    Google Scholar 

  • Henry RJ (1997) Practical applications of plant molecular biology. Chapman & Hall, London, p 280

    Book  Google Scholar 

  • Henry RJ (2001) Plant genotyping: the DNA fingerprinting of plants. CABI Publishing, Oxford, pp 239–249

    Book  Google Scholar 

  • Holaday JW (1999) Competing in the new millennium: challenges facing small biotechnology firms. Congressional Testimony -Subcommittee on Technology, 27 October, 1999. http:www.house.gov/science/holaday-102799.htm

  • Huang J, Tichit M, Poulot M, Darly S, Li S, Petit C, Aubry C (2015) Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J Environ Manag 149:138–147

    Article  Google Scholar 

  • Hubbell B, Welsh R (1998) Transgenic crops: engineering a more sustainable agriculture? Agric Hum Values 15:43–56

    Article  Google Scholar 

  • Iriawati PMR, Rodiansyah A (2017) In vitro regeneration of foxtail millet (Setaria italica (L.) Beauv.) cv. Buru Hotong. J Math Fund Sci 49(2):171–180

    Article  CAS  Google Scholar 

  • ISAAA (2016) Global status of commercialized biotech/ GM crops: ISAAA brief 52. ISAAA, Ithaca

    Google Scholar 

  • Islam MM, Ahmed M, Mahaldar D (2005) In vitro callus induction and plant regeneration in seed explants of rice (Oryza sativa L.). Res J Agric Biol Sci 1:72–75

    Google Scholar 

  • James C (2014) Global status of commercialized biotech/GM crops: 2014, executive summary. Dedicated to the late Nobel Peace Laureate, Norman Borlaug, (ISAAA Brief 49), p. 32 http://www.isaaa.org/resources/publications/briefs/49/executivesummary/default.asp and top ten facts: http://www.isaaa.org/resources/publications/briefs/49/toptenfacts/default.asp and http://www.askforce

  • Jena J, Sethy P, Jena T, Ranjan SM, Kumar SS, Kumar GD, Palai JB (2018) Rice biofortification: a brief review. J Pharmacogn Phytochem 7(1):2644–2647

    CAS  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Rijeka, pp 45–83

    Google Scholar 

  • Keong C, Nordin FA, Bhatt A, Keng C (2018) Culture medium and varietal selection for establishment of callus culture of Artemisia annua. Educ JSMT 5(2):67–76

    Google Scholar 

  • Khush GS (2008) Biofortification of crops for reducing malnutrition. Proc Indian Natl Sci Acad 74(1):21–25

    CAS  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Sharma S, Kero S, Sharma S, Sharma AK, Kumar M, Bhat KV (2008) Assessment of genetic diversity in common bean (Phaseolus vulgaris L) germplasm using amplified fragment length polymorphism (AFLP). Sci Hortic 116:138–143

    Article  CAS  Google Scholar 

  • Kumar S, Kakraliya SK, Lakhran H, Sheoran S, Ram M, Meena RS (2016a) Use of Bacillus thuringiensis (Bt) Gene: a biotechnological tool for crop improvement. Prog Res 11:6247–6251

    Google Scholar 

  • Kumar S, Sheoran S, Kakraliya SK, Kumar P, Meena RS (2016b) Drought: A challenge for Indian farmers in context to climate change and variability. Prog Res 11:6243–6246

    Google Scholar 

  • Kumar S, Meena RS, Jakhar SR, Jangir CK, Gupta A, Meena BL (2019) Adaptation strategies for enhancing agricultural and environmental sustainability under current climate. In: Meena RS (ed) Sustainable agriculture. Scientific Publisher, Jaipur, pp 226–274

    Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: Plant genome editing toward disease resistance. Annu Rev Phytopathol 56:22.1–22.34

    Article  CAS  Google Scholar 

  • Levitus G, Echenique V, Rubinstein C, Hoop E, Mroginski L (2010) Biotecnología y mejoramiento vegetal II. ArgenBio. Consejo Argentino para la Información y el Desarrollo de la Biotecnología, Argentina, p 650

    Google Scholar 

  • Li ZH, Kučerová Z, Zhao S, Stejskal V, Opit G, Qin M (2011) Morphological and molecular identification of three geographical populations of the storage pest Liposcelis bostrychophila (Psocoptera). J Stored Prod Res 47(3):168–172

    Article  CAS  Google Scholar 

  • Lokko Y, Heijde M, Schebesta K, Scholtés P, Van Montagu M, Giacca M (2018) Biotechnology and the bioeconomy-Towards inclusive and sustainable industrial development. New Biotechnol 40:5–10

    Article  CAS  Google Scholar 

  • López-Jaimes EL (2014) Diversidad de bacterias asociadas a la rizosfera de Lupinus montanus Kunth. Tesís de Maestría en Ciencias. Instituto Politécnico Nacional, Morelos

    Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM (2008) Rapid “opensource” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malabadi RB, Choudhury H, Tandon P (2004) Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and Gellan gum. Sci Hortic 102:449–459

    Article  Google Scholar 

  • Malabadi RB, Mulgund GS, Nataraja K (2005) Plant re generation via somatic embryogenesis in Pinus kesiya (Royle ex. Gord.) influenced by triacontanol. Acta Physiol Plant 27(4A):531–537

    Article  CAS  Google Scholar 

  • Malabadi RB, Teixeira da Silva JA, Nataraja K, Vijaykumar S, Mulgund SG (2011a) Induction of somatic embryogenesis in mango (Mangifera indica L.). Int J Biol Technol 2(2):12–18

    CAS  Google Scholar 

  • Malabadi RB, Vijaya SK, Mulgund GS, Nataraja K (2011b) Induction of somatic embryogenesis in Papaya (Carica papaya). Res Biotechnol 2(5):40–55

    Google Scholar 

  • McNeely JA, Scherr SJ (2003) Ecoagriculture. Island Press, Washington, DC, p 319

    Google Scholar 

  • MEA (2005) Ecosystems and human well-being. Island Press, Washington, DC, p 155

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Bohra JS, Lal R, Yadav GS, Pandey A (2019) Response of alley cropping-grown sesame to lime and sulphur on yield and available nutrient status in an acidic soil of Eastern India. Energy Ecol Environ 4:65–74

    Article  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020a) Impact of agrochemicals on soil microbiota and management: a review. Land 9(34):1–22. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Méndez-López A, Villanueva-Verduzco C, Rojas-Martínez RI, Sahagún-Castellanos J, Colinas-León MT, Sánchez-Vega M (2019) Genetic diversity of parthenocarpic genotypes shrubby squash using molecular genetic markers. Rev Mex Cienc Agríc 10(1):1–9

    Google Scholar 

  • Mitsunobu H, Teramoto J, Nishida K, Kondo A (2017) Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol 35:983–996

    Article  PubMed  CAS  Google Scholar 

  • Mohamed FH, Omar GF, Ismail MA (2017) In vitro regeneration, proliferation and growth of strawberry under different light treatments. Acta Hortic 1155:361–368

    Article  Google Scholar 

  • Mohler V, Schwarz G (2005) Genotyping tools in plant breeding: From restriction fragment length polymorphisms to single nucleotide polymorphisms. In: Molecular marker systems in plant breeding and crop improvement. Springer, Cham, pp 23–38

    Chapter  Google Scholar 

  • Mor-Mussery A, Leu S, Budovsky A, Lensky I (2015) Plant-soil interactions and desertification: a case study in the Northern Negev, Israel. Arid Land Res Manag 29(1):85–97

    Article  Google Scholar 

  • Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–61

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42(2):601–607

    Article  CAS  Google Scholar 

  • Nogue PY, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC (2014) Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet 10(11):1–12

    Google Scholar 

  • Norton BG (1995) Evaluating ecosystem states: two competing paradigms. Ecol Econ 14:113–127

    Article  Google Scholar 

  • Oberdoerfer RB, Shillito RD, De Beuckeleer M, Mitten DH (2005) Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J Agric Food Chem 53:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Olsson P, Folke P (2001) Local ecological knowledge and institutional dynamics for ecosystem management: a study of Lake Racken watershed, Sweden. Ecosystems 4:85–104

    Article  Google Scholar 

  • Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, New York, p 298

    Book  Google Scholar 

  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs RL et al (1996) New weed control opportunities: development of soybeans with a Roundup Ready™ gene. Herbicide Resist Crops 2009:53–84

    Google Scholar 

  • Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49–66

    Article  PubMed  CAS  Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B 365:3065–3081

    Article  Google Scholar 

  • Paterson AH (1996) Making genetic maps. In: Paterson AH (ed) Genome mapping in plants. R G Landes Company, Austin, pp 23–39

    Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persley GJ (2000) Agricultural biotechnology and the poor: promethean science. In: Persley GJ, Lantin MM (eds) Agricultural biotechnology and the poor: Proceedings of an international conference Washington DC, 21-22 October 1999. Washington, Consultative Group on International Agricultural Research, pp 1–12

    Google Scholar 

  • Pierik RLM (1987) In vitro culture of higher plants. Springer, Dordrecht, p 348

    Book  Google Scholar 

  • Pretty J (2003) Social capital and the collective management of resources. Science 302:1912–1915

    Article  PubMed  CAS  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B 363:447–465

    Article  Google Scholar 

  • Pretty J, Ward H (2001) Social capital and the environment. World Dev 29:209–227

    Article  Google Scholar 

  • Pretty JN, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9(1):5–24

    Article  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    Article  PubMed  CAS  Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Ann Rev Resour Econ 1:665–694

    Article  Google Scholar 

  • Qin M, Li ZH, Kucerova Z, Cao Y, Stejskal V (2008) Rapid discrimination of the common species of the stored product pest Liposcelis (Psocoptera: Liposcelididae) from China and the Czech Republic, based on PCR-RFLP analysis. Eur J Entomol 105(4):713

    Article  CAS  Google Scholar 

  • Raintree JB, Warner K (1986) Agroforestry pathways for the intensification of shifting cultivation. Agrofor Syst 4:39–54

    Article  Google Scholar 

  • Ramírez-Contreras A, Rodríguez-Trejo DA (2009) Plantas nodriza en la reforestación con Pinus hartwegii Lindl. Revista Chapingo. Ser Cienc Forest Ambiente 15(1):43–48

    Google Scholar 

  • Ramirez-Mozqueda MA, Iglesias Andreu LG (2017) Vanilla (Vanilla planifolia Jacks.) cell suspension cultures: establishment, characterization, and applications. Biotechnology 7(4):242–248

    Google Scholar 

  • Rao NK (2004) Plant genetic resources: Advancing conservation and use through biotechnology. Afr J Biotechnol 3(2):136–145

    Google Scholar 

  • Reichert JM, Carneiro TJ, Reinert DJ, Rodrigues MF, Sanchez LEA (2016) Land use effects on subtropical, sandy soil under sandyzation/desertification processes. Agric Ecosyst Environ 233:370–380

    Article  Google Scholar 

  • Rodríguez DA, Rojo C (1997) Estudio de la semilla del arbusto Lupinus montanus H.B.K. (Leguminosae). Rev Chapingo Ser Cienc Forest 3:39–45

    Google Scholar 

  • Ronald P (2008) The new organic. The Boston Globe, March 16. Available at http://www.boston.com/bostonglobe

  • Ronald P, Adamchak R (2008) Tomorrow’s table: Organic farming, genetics, and the future of food. Oxford University Press, New York, p 228

    Google Scholar 

  • Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, London, p 86

    Google Scholar 

  • Sarasan V, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants-progress in the past decade. In Vitro Cell Dev Biol Plant 42:206–214

    Article  Google Scholar 

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  PubMed  Google Scholar 

  • Scientific American (2009) Biotech’s plans to sustain agriculture. Sci Am 301(4):86–94

    Article  Google Scholar 

  • Serageldin I (1999) Biotechnology and food security in the 21st century. Science 285:387–389

    Article  PubMed  CAS  Google Scholar 

  • Shams SS, Vahed SZ, Soltanzad F, Kafil V, Barzegari A, Atashpaz S, Barar J (2011) Highly effective DNA extraction method from fresh, frozen, dried and clotted blood samples. Bioimpacts 1(3):183

    CAS  Google Scholar 

  • Shetty MJ, Chandan K, Krishna HC, Aparna GS (2018) Genetically modified crops: an overview. J Pharmacogn Phytochem 7(1):2405–2410

    CAS  Google Scholar 

  • Shure M, Wessler S, Fedoro N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35:225–233

    Article  PubMed  CAS  Google Scholar 

  • Singh RB (2000) Biotechnology, biodiversity, and sustainable agriculture: a contradiction. http://www.bic.searca.org/seminar_proceedings/Bangkok/2000/Hplenary_papers/singh.pdf

  • Singh MV (2009) Effect of trace element deficiencies in soil on human and animal health. Bull Indian Soc Soil Sci 27:75–101

    Google Scholar 

  • Smith P (2013) Delivering food security without increasing pressure on land. Glob Food Secur 2:18–23

    Article  Google Scholar 

  • Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Pâques F, Duchateau P (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Stella S, Alcon P, Montoya G (2017) Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat Struct Mol Biol 24:882–892

    Article  PubMed  CAS  Google Scholar 

  • Stepkowski T, Zak M, Moulin L, Króliczak J, Golińska B, Narożna D, Safronova V, Mądrzak CJ (2011) Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant Rhizobium species in root nodules of lupin and serradella plants growing in Europe. Syst Appl Microbiol 34(5):368–375

    Article  PubMed  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Article  Google Scholar 

  • Swift MJ, Izac AMN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes-are we asking the right questions? Agric Ecosyst Environ 104:113–134

    Article  Google Scholar 

  • Tapia ME, Fries AM (2007) Guía de Campo de los cultivos andinos. FAO-ANPE, Lima

    Google Scholar 

  • Tegtmeier EM, Duffy MD (2004) External costs of agricultural production in the United States. Int J Agric Sustain 2:1–20

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisserat B, Esan E, Murashige T (1979) Somatic embryogenesis in angiosperms. Hortic Rev 1:1–78

    Google Scholar 

  • Touchell D, Smith J, Ranney TG (2008) Novel applications of plant tissue culture. Comb Proc Int Plant Propagat Soc 58:196–199

    Google Scholar 

  • United Nations Environment Programme (2002) State of the environment and policy retrospective: 1972–2002. In: United Nations Environment Programme (ed) Global environment outlook 3. United Nations, New York, pp 1–30

    Google Scholar 

  • Velten S, Leventon J, Jager N, Newig J (2015) What is sustainable agriculture? A systematic review. Sustainability 7:7833–7865

    Article  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    Article  PubMed  CAS  Google Scholar 

  • Waltz E (2015) USDA approves next-generation GM potato. Nat Biotechnol 33:12–13

    Article  PubMed  CAS  Google Scholar 

  • Wambugu F (2001) Modifying Africa: how biotechnology can benefit the poor and hungry, a case study from Kenya. In: Action against undernutrition and poverty, Nairobi, Kenya, p 76

    Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017a) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tu WC, Huang EJ, Chen YH, Chen JH, Yeh WB (2017b) Identification of disease-transmitting mosquitoes: Development of species-specific probes for DNA Chip Assay using mitochondrial COI and ND2 genes and ribosomal internal transcribed spacer 2. J Med Entomol 54(2):396–402

    PubMed  CAS  Google Scholar 

  • Weasel LH (2008) Food fray: inside the controversy over genetically modified food. AMACOM, New York, p 258

    Google Scholar 

  • Weeden N, Timmerman G, Lu J (1994) Identifying and mapping genes of economic significance. Expanding the production and use of cool season food legumes. Curr Plant Sci Biotechnol Agric 19:726–737

    Article  Google Scholar 

  • Wilches AM (2010) La biotecnología en un mundo globalizado. Rev Colomb Bioet 5(2):164–169

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11(4):438–448

    Article  PubMed  CAS  Google Scholar 

  • Yadav GS, Lal, R, Meena RS (2020) Vehicular traffic effects on hydraulic properties of a Crosby silt loam under a long-term no-till farming in Central Ohio, USA. Soil Till Res. https://doi.org/10.1016/j.still.2020.104654

  • Yang Q, Kučerová Z, Li Z, Kalinović I, Stejskal V, Opit G, Cao Y (2012) Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. J Stored Prod Res 48:120–125

    Article  Google Scholar 

  • Yeung E, Rahman H, Thorpe T (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv Topas. I. Histodifferentiation. Int J Plant Sci 157(1):27–39

    Article  Google Scholar 

  • Yildiz M (2012) The prerequisite of the success in plant tissue culture: High frequency shoot regeneration. In: Recent advances in plant in vitro culture. IntechOpen, Budapest, pp 63–90

    Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZH, Cui BY, Li ZH, Jiang F, Yang QQ, Kučerová Z, Li FJ (2016) The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA. Sci Rep 6:21022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, S.P., Ardisana, E.F.H., Leal, R.P. (2020). Plant Biotechnology for Agricultural Sustainability. In: Kumar, S., Meena, R.S., Jhariya, M.K. (eds) Resources Use Efficiency in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6953-1_12

Download citation

Publish with us

Policies and ethics