Skip to main content

CRISPR/Cas-Based Insect Resistance in Crops

  • Chapter
  • First Online:
CRISPR Crops

Abstract

Insects are responsible for considerable crop losses worldwide through their direct damage and the transmission of various diseases as well. Recently, novel techniques would replace the most frequently used chemical insecticides and help facilitate the sustainability in crop production in near future. Different strategies to overcome crop resistance against insect, especially Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated system (CRISPR/Cas) based genome editing and gene drives are becoming available for insecticide resistance management. Recent advances and applications of CRISPR/Cas9 both in plants and insects offer promising mechanism of deterrence to insect pests through improving resistance of Bt, knockout, or insertion of new genes; in depth understanding of plant response against insect pests provides routes to optimize plant defenses against insects. In addition, directed evolution may play an important role to combat insect resistance against Bt crops. Although, various genome editing techniques have been developed, however; CRISPR-based approaches for insect management in crops are growing rapidly so far. Therefore, recently CRISPR-mediated gene drives are being established as potential insect management approaches in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Severinov K (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):5573

    Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Lander ES (2017) RNA targeting with CRISPR–Cas13. Nature 550(7675):280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akbari OS et al (2013) A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol 23:671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alphey L (2014) Genetic control of mosquitoes. Annu Rev Entomol 59:205–224

    Article  CAS  PubMed  Google Scholar 

  • Aryan A, Anderson MA, Myles KM, Adelman ZN (2013) TALEN-based gene disruption in the dengue vector Aedes aegypti. PLoS One 8(3):60082

    Article  CAS  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Isaacs R (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88(3):469–494

    Article  Google Scholar 

  • Badran AH, Guzov VM, Huai Q, Kemp MM, Vishwanath P, Kain W, Wang P (2016) Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533(7601):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bassett AR, Liu JL (2014) CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 41(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MA, Dahlem TJ, Adelman ZN (2015) Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci 112(13):4038–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayen S (2012) Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems. Environ Int 48:84–101

    Article  CAS  PubMed  Google Scholar 

  • Bazuin S, Azadi H, Witlox F (2011) Application of GM crops in Sub-Saharan Africa: lessons learned from green revolution. Biotechnol Adv 29(6):908–912

    Article  PubMed  Google Scholar 

  • Beeman RW, Friesen KS, Denell RE (1992) Maternal-effect selfish genes in flour beetles. Science 256(5053):89–92

    Article  CAS  PubMed  Google Scholar 

  • Beumer KJ, Trautman JK, Mukherjee K, Carroll D (2013) Donor DNA utilization during gene targeting with zinc-finger nucleases. Genes Genom Genet 3(4):657–664

    CAS  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  • Bi HL, Xu J, Tan AJ, Huang YP (2016) CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. Insect Sci 23(3):469–477

    Article  CAS  PubMed  Google Scholar 

  • Billon P, Bryant EE, Joseph SA, Nambiar TS, Hayward SB, Rothstein R (2017) CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell 67:1068–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borel B (2017) When the pesticides run out. Nature 543:302–304

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briese DT (2004) Weed biological control: applying science to solve seemingly intractable problems. Aust J Entomol 43:304–317

    Article  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:85–86

    Article  Google Scholar 

  • Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc London Ser B 270(1518):921–928

    Article  CAS  Google Scholar 

  • Burt A, Koufopanou V (2004) Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 14(6):609–615

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:2001793

    Article  CAS  Google Scholar 

  • Butt H, Eid A, Momin AA, Bazin J, Crespi M, Arold ST, Mahfouz MM (2019) CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol 20(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Caplan AL, Parent B, Shen M, Plunkett C (2015) No time to waste-the ethical challenges created by CRISPR. EMBO Rep 16:1421–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carriere Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168

    Article  CAS  PubMed  Google Scholar 

  • Champer J, Buchman A, Akbari OS (2016) Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 17:146–159

    Article  CAS  PubMed  Google Scholar 

  • Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP, Ter-Ovanesyan D (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu JC, Jiang X, Zhao L, Hamm CA, Cridland JM, Saelao P, Hamby KA, Lee EK, Kwok RS, Zhang G, Zalom FG (2013) Genome of Drosophila suzukii, the spotted wing drosophila. G3: Genes Genome Genet 3(12):2257–2271

    Article  CAS  Google Scholar 

  • Choudhary E, Thakur P, Pareek M, Agarwal N (2015) Gene silencing by CRISPR interference in mycobacteria. Nat Commun 6:6267

    Article  CAS  PubMed  Google Scholar 

  • Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87(4):559–566

    Article  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819e823

    Article  CAS  Google Scholar 

  • Cotter J, Steinbrecher R (2016) Gene-editing. In: Urgent need of regulation. Elsevier, London

    Google Scholar 

  • Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crist E, Mora C, Engelman R (2017) The interaction of human population, food production, and biodiversity protection. Science 356:260–264

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Shi X, Tjian R, Lionnet T, Singer RH (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci 112(38):11870–11875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deredec A, Burt A, Godfray HCJ (2008) The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179(4):2013–2026

    Article  PubMed  PubMed Central  Google Scholar 

  • Diepenbrock LM, Rosensteel DO, Hardin JA, Sial AA, Burrack HJ (2016) Season-long programs for control of Drosophila suzukii in southeastern US blueberries. Crop Prot 81:76–84

    Article  Google Scholar 

  • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32(12):1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Lin J, Held NL, Clem RJ, Passarelli AL, Franz AW (2015) Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS One 10(3):e0122353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  CAS  Google Scholar 

  • Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations. elife 3:e03401

    Article  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organisation (FAO) (2013) The state of food insecurity in the world, executive summary

    Google Scholar 

  • Franz G (2005) Genetic sexing strains in mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: SIT. Springer, Dordrecht, pp 427–451

    Google Scholar 

  • Gabrieli P, Smidler A, Catteruccia F (2014) Engineering the control of mosquito-borne infectious diseases. Genome Biol 15:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293(5531):857–860

    Article  CAS  PubMed  Google Scholar 

  • Gantz VM, Bier E (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348(6233):442–444

    Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI et al (2017) Programmable base editing of A • T to G • C in genomic DNA without DNA cleavage. Nat Publ Gr 551:464–471

    CAS  Google Scholar 

  • Ghosh S, Tibbit C, Liu JL (2016) Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference. Nucleic Acids Res 44(9):84–84

    Article  CAS  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokcezade J, Sienski G, Duchek P (2014) Efficient CRISPR/Cas9 plasmids for rapid and versatile genome editing in Drosophila. Genes Genom Genet 4(11):2279–2282

    Google Scholar 

  • Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM et al (2013a) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratz SJ, Wildonger J, Harrison MM, O’Connor-Giles KM (2013b) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly 7(4):249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoraki L, Puggioli A, Mavridis K, Douris V, Montanari M, Bellini R, Vontas J (2017) Striking diflubenzuron resistance in Culex pipiens, the prime vector of West Nile Virus. Sci Rep 7(1):11699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo L, Liang P, Zhou X, Gao X (2014) Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Sci Rep 4:6924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, Sharakhov IV (2015) A male-determining factor in the mosquito Aedes aegypti. Science 348(6240):1268–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JC, Donnelly-Vanderloo MJ, Hume DJ (2018) Triazine-resistant crops: the agronomic impact and physiological consequences of chloroplast mutation. In: Herbicide-resistant crops. Springer, New York, pp 107–126

    Chapter  Google Scholar 

  • Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D et al (2016) A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34(1):78

    Article  CAS  PubMed  Google Scholar 

  • Han X, Liu Z, Chan JM, Zhang K, Li Y, Zeng Z et al (2015) CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv 1(7):1500454

    Article  CAS  Google Scholar 

  • Harrington LB et al (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Takemoto T (2015) Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep 5:11315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidenreich M, Zhang F (2016) Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci 17(1):36

    Article  CAS  PubMed  Google Scholar 

  • Herrero S, Ferré J, Escriche B (2001) Mannose phosphate isomerase isoenzymes in Plutella xylostella Support common genetic bases of resistance to Bacillus thuringiensis toxins in lepidopteran species. Appl Environ Microbiol 67(2):979–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgins KA, Rieseberg L, Otto SP (2009) Genetic control of invasive plants species using selfish genetic elements. Evol Appl 2(4):555–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdren JP, Shelanski H, Vetter D, Goldfuss C (2015) Improving transparency and ensuring continued safety in biotechnology. Office of Science and Technology Policy

    Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM et al (2016) CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). Insect Biochem Mol Biol 75:98–106

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2016) ISAA Brief 52-2016: executive summary. http://www.isaaa.org/resources/publications/briefs/52/executivesummary/default.asp

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years

    Google Scholar 

  • Itokawa K, Komagata O, Kasai S, Ogawa K, Tomita T (2016) Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci Rep 6:24652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen R, van Embden JD, Gaastra W, Schouls LM (2002) Identification of a novel family of sequence repeats among prokaryotes. OMICS 6:23–33

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13(11):1465–1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin MH, Xiao YT, Cheng Y, Hu J, Xue CB, Wu KM (2018) Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera. Insect Sci 26(6):1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Haur M, Doudna JA, Carpentier EA (2012) Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandul NP, Liu J, Wu SL, Marshall JM, Akbari OS (2019) Transforming insect population control with precision guided sterile males with demonstration in flies. Nat Commun 10(1):84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MZ et al (2010) Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends Biotechnol 37:800–804

    Article  CAS  Google Scholar 

  • Kim E et al (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King A (2017) Technology: the future of agriculture. Nature 544:21–23

    Article  Google Scholar 

  • Kistler KE, Vosshall LB, Matthews BJ (2015) Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11(1):51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klassen W, Curtis CF (2005) History of the sterile insect technique. In: SIT. Springer, Dordrecht, pp 3–36

    Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo S, Ueda R (2013) Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195(3):715–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutroumpa FA, Monsempes C, François MC, De Cian A, Royer C, Concordet JP, Jacquin-Joly E (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:29620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269(5229):1427–1429

    Article  CAS  PubMed  Google Scholar 

  • Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K, Wei X et al (2017) CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods 14:710–712

    Article  CAS  PubMed  Google Scholar 

  • Landry JF, Hebert PD (2013) Plutella australiana (Lepidoptera, Plutellidae), an overlooked diamondback moth revealed by DNA barcodes. ZooKeys 327:43

    Article  Google Scholar 

  • Languin K (2014) Genetic engineering to the rescue against invasive species? National Geographic

    Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Bruck DJ, Dreves AJ, Ioriatti C, Vogt H, Baufeld P (2011) In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag Sci 67(11):1349–1351

    Article  CAS  PubMed  Google Scholar 

  • Li F, Scott MJ (2016) CRISPR/Cas9-mediated mutagenesis of the white and Sex lethal loci in the invasive pest, Drosophila suzukii. Biochem Biophys Res Commun 469(4):911–916

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ma S, Wang X, Chang J, Gao J, Shi R, Xia Q (2014) Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem Mol Biol 49:35–42

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Hallerman E, Peng Y, Li Y (2016) Development of Bt rice and Bt maize in China and their efficacy in target pest control. Int J Mol Sci 17(10):1561

    Article  PubMed Central  CAS  Google Scholar 

  • Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J et al (2014) Generating rats with conditional alleles using CRISPR/Cas9. Cell Res 24:122–125

    Article  CAS  PubMed  Google Scholar 

  • Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL (2015) Modifying an insect cell N-Glycan processing pathway using CRISPR-Cas technology. ACS Chem Biol 10:2199–2208

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM (2013) Efficient targeted mutagenesis in the monarch butterfly using zinc finger nucleases. Genome Res 23:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire S (2015) International Food Policy Research Institute. 2014. Washington, DC: Global Nutrition Report 2014: actions and accountability to accelerate the world’s progress on nutrition. Adv Nutr 6(3):278–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon SB et al (2018) Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat Commun 9:3651

    Article  CAS  Google Scholar 

  • Naik NG, Lo YW, Wu TY, Lin CC, Kuo SC, Chao YC (2018) Baculovirus as an efficient vector for gene delivery into mosquitoes. Sci Rep 8(1):17778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi T, Kato Y, Matsuura T, Watanabe H (2014) CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One 9(5):98363

    Article  CAS  Google Scholar 

  • Ochiai H, Sugawara T, Yamamoto T (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43(19):e127–e127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osman GH, Assem SK, Alreedy RM, El-Ghareeb DK, Basry MA, Rastogi A, Kalaji HM (2015) Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Sci Rep 5:18067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T et al (2014) Regulating gene drives. Science 345(6197):626–628

    Article  CAS  PubMed  Google Scholar 

  • Palma L, Munoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan MH, Wang XY, Chai CL, Zhang CD, Lu C, Xiang ZH (2009) Identification and function of Abdominal-A in the silkworm, Bombyx mori. Insect Mol Biol 18(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Patil SB (2003) Studies on the Management of Cotton Pink Bollworm Pectinophora Gossypiella (saunders)(Lepidoptera: Gelechiidae) (Doctoral dissertation, UAS)

    Google Scholar 

  • Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS (2015) Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol 27:121–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson BA, Haak DC, Nishimura MT, Teixeira PJ, James SR, Dangl JL et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS ONE 11:0162169

    Google Scholar 

  • Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) Correction: CRISPR MultiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(9):0138634

    Article  CAS  Google Scholar 

  • Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F et al (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. Genes Genom Genet 3(10):1707–1715

    Google Scholar 

  • Quan X (2017) Genetic analysis of desiccation resistance in Drosophila (Doctoral dissertation, 首都大学東京)

    Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reegan AD, Ceasar SA, Paulraj MG, Ignacimuthu S, Al-Dhabi NA (2016) Current status of genome editing in vector mosquitoes. Rev Biosci Trends 20:34–38

    Google Scholar 

  • Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid W, O’Brochta DA (2016) Applications of genome editing in insects. Curr Opin Insect Sci 13:43–54

    Article  PubMed  Google Scholar 

  • Ren XL, Ma Y, Cui JJ, Li GQ (2014) RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. J Insect Physiol 67:28–36

    Article  CAS  PubMed  Google Scholar 

  • Roditakis E, Steinbach D, Moritz G, Vasakis E, Stavrakaki M, Ilias A et al (2017) Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochem Mol Biol 80:11–20

    Article  CAS  PubMed  Google Scholar 

  • Sanchez CHM, Wu SL, Bennett JB, Marshall JM (2018) A modular simulation framework for the spread of gene drives through spatially-explicit mosquito populations. Preprint at https://www.biorxiv.org/content/early/2018/06/19/350488

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MJ, Pimsler ML, Tarone AM (2014) Sex determination mechanisms in the Calliphoridae (blow flies). Sex Dev 8(1-3):29–37

    Article  CAS  PubMed  Google Scholar 

  • Sebo ZL, Lee HB, Peng Y, Guo Y (2014) A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly 8(1):52–57

    Article  PubMed  Google Scholar 

  • Shukla JN, Palli SR (2013) Tribolium castaneum Transformer-2 regulates sex determination and development in both males and females. Insect Biochem Mol Biol 43(12):1125–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer M, Frischknecht F (2016) Time for genome editing: next-generation attenuated malaria parasites. Trends Parasitol 33(3):202–213

    Article  PubMed  CAS  Google Scholar 

  • Smidler AL, Terenzi O, Soichot J, Levashina EA, Marois E (2013) Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One 8(8):74511

    Article  CAS  Google Scholar 

  • Somers J, Nguyen J, Lumb C, Batterham P, Perry T (2015) In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. Insect Biochem Mol Biol 64:116–127

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P (2008) CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    Article  CAS  PubMed  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Steinbach D, Gutbrod O, Lümmen P, Matthiesen S, Schorn C, Nauen R (2015) Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Insect Biochem Mol Biol 63:14–22

    Article  CAS  PubMed  Google Scholar 

  • Stevens T, Song S, Bruning JB, Choo A, Baxter SW (2017) Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Insect Biochem Mol Biol 80:61–70

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L et al (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28(12):1304

    Article  CAS  PubMed  Google Scholar 

  • Taning CNT, Van Eynde B, Yu N, Ma S, Smagghe G (2017) CRISPR/Cas9 in insects: applications, best practices and biosafety concerns. J Insect Physiol 98:245–257

    Article  CAS  PubMed  Google Scholar 

  • Tikar SN, Kumar A, Prasad GBKS, Prakash S (2009) Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res 105(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43(2):501–510

    Article  PubMed  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA ERS (2016) Adoption of genetically engineered crops in the US. https://www.ers.usda.gov/dataproducts/adoption-of-genetically-engineered-crops-in-the-us.aspx

  • Wang Y, Li Z, Xu J, Zeng B, Ling L, You L et al (2013) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23(12):1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang H, Wang H, Zhao S, Zuo Y, Yang Y, Wu Y (2016) Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochem Mol Biol 76:11–17

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang H, Liu S, Liu L, Tay WT, Walsh TK et al (2017) CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. Insect Biochem Mol Biol 87:147–153

    Article  CAS  PubMed  Google Scholar 

  • Wolter F, Puchta H (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 94:767–775

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Wu M, Wen K, Ren M, Long L, Zhang X, Gao G (2014) CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. Genes Genom Genet 4(11):2167–2173

    Google Scholar 

  • Yu Z, Chen H, Liu J, Zhang H, Yan Y, Zhu N, Liang X (2014) Various applications of TALEN-and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 3(4):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SS et al (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550–553

    Article  CAS  PubMed  Google Scholar 

  • Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1-2):339–350

    Article  CAS  PubMed  Google Scholar 

  • Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol 105(4):1115–1129

    Article  PubMed  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, Degennaro EM et al (2017) Multiplex gene editing by CRISPR-Cpf1using a single crRNA array. Nat Biotechnol 35:31–34

    Article  CAS  PubMed  Google Scholar 

  • Zetschi A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  Google Scholar 

  • Zhang Z, Aslam AF, Liu X, Li M, Huang Y, Tan A (2015) Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. J Insect Physiol 79:73–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao B, Roy S, Saha TT, Kokoza VA, Li M, Raikhel AS (2016) MmicroRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti. Proc Natl Acad Sci 113(33):4828–4836

    Article  CAS  Google Scholar 

  • Zhang Z, Liu X, Shiotsuki T, Wang Z, Xu X, Huang Y et al (2017) Depletion of juvenile hormone esterase extends larval growth in Bombyx mori. Insect Biochem Mol Biol 81:72–79

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M, Ouyang H, Teng C (2014) Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 4:3943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu L, Mon H, Xu J, Lee JM, Kusakabe T (2015) CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci Rep 5:18103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer CT, Garrood WT, Puinean AM, Eckel-Zimmer M, Williamson MS, Davies TE, Bass C (2016) A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster. Insect Biochem Mol Biol 73:62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Y, Wang H, Xu Y, Huang J, Wu S, Wu Y, Yang Y (2017) CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochem Mol Biol 89:79–85

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Kashif Zahoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahoor, M.K., Ahmad, A., Zahoor, M.A., Majeed, H.N., Zulhussnain, M., Ranian, K. (2021). CRISPR/Cas-Based Insect Resistance in Crops. In: Ahmad, A., Khan, S.H., Khan, Z. (eds) CRISPR Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-7142-8_4

Download citation

Publish with us

Policies and ethics