Skip to main content

Optimization of Energy-Proficient Infrared Radiated Rapid Hydrolysis of Pineapple Skin to Reducing Sugar

  • Conference paper
  • First Online:
Advances in Bioprocess Engineering and Technology

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 524 Accesses

Abstract

Waste pineapple skin (WPS) has been hydrolyzed into reducing sugar (RS) using Amberlyst 15 catalyst. The effects of the application of infrared radiation on the intensification of hydrolysis of WPS have been evaluated. The Taguchi orthogonal design determined optimal values of process factors, viz., 70 °C reactor temperature, 30 min batch time, water to WPS ratio (w/w) of 35, and 2 wt% catalyst concentration, corresponding to maximum 86.78% RS yield employing an infrared radiated batch reactor (IRRBR). Remarkably, the RS yield in IRRBR was significantly greater than that obtained (45.62%) using a traditional batch reactor (TBR) at the derived optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chakraborty R, Sahu H (2014) Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network. Appl Energy 114:827–836

    Article  CAS  Google Scholar 

  • Chakraborty R, RoyChowdhury D (2013) Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chem Eng J 215–216:491–499

    Article  Google Scholar 

  • Girisuta B, Dussan K, Haverty D, Leahy JJ, Hayes MHB (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  • Kucuk MM, Demirbas A (1999) Kinetic study on hydrolysis of biomass (Ailanthus altissima chips) by using alkaline-glycerol solution. Energ Convers Manage 40:1397–1403

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 4:449–467

    Article  Google Scholar 

  • Meena S, Navatha S, Devi BLAP, Prasad RBN, Pandey A, Sukumaran RK (2015) Evaluation of amberlyst 15 for hydrolysis of alkali pretreated rice straw and fermentation to ethanol. Biochem Eng J 102:49–53

    Article  CAS  Google Scholar 

  • Orozco A, Ahmad MNM, Rooney D, Walker GM (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf Environ 85:446–449

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Rinaldi R, Palkovits R, Schuth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050

    Article  CAS  Google Scholar 

  • Seker DC, Zain NAM (2014) Response surface optimization of glucose production from liquid pineapple waste using immobilized invertase in PVA–alginate–sulfate beads. Sep Purif Technol 133:48–54

    Article  CAS  Google Scholar 

  • Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups. J Am Chem Soc 130:12787–12793

    Article  CAS  Google Scholar 

  • Vani S, Binod P, Kuttiraja M, Sindhu R, Sandhya SV, Preeti VE, Sukumaran RK, Pandey A (2012) Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. Bioresour Technol 112:300–307

    Article  CAS  Google Scholar 

  • Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Feng C, Dong Y (2013) Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind Crop Prod 46:205–209

    Article  CAS  Google Scholar 

  • Zain NAM, Suhaimi MS, Idris A (2010) Hydrolysis of liquid pineapple waste by invertase immobilized in PVA–alginate Matrix. Biochem Eng J 50:83–89

    Article  Google Scholar 

  • Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohyd Res 344:2069–2072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatterjee, S., Bhattacharjee, S.K., Roy, R., Chakraborty, R. (2021). Optimization of Energy-Proficient Infrared Radiated Rapid Hydrolysis of Pineapple Skin to Reducing Sugar. In: Ramkrishna, D., Sengupta, S., Dey Bandyopadhyay, S., Ghosh, A. (eds) Advances in Bioprocess Engineering and Technology . Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-7409-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7409-2_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7408-5

  • Online ISBN: 978-981-15-7409-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics