Skip to main content

Whole Murine Brain Imaging Based on Optical Elastic Scattering

  • Chapter
  • First Online:
Optical Imaging in Human Disease and Biological Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 3233))

  • 1980 Accesses

Abstract

Imaging whole brains is one of the central efforts of biophotonics. While the established imaging modalities used in radiology, such as MRI and CT, have enabled in vivo investigations of various cognitive and affective processes, the prevailing resolution of one-cubic-millimeter has limited their use in studying the “ground-truth” of neuronal activities. On the other hand, electron microscopy (EM) visualizes the finest anatomic structures at a resolution of around 30 nm. However, the extensive tissue preparation process and the required large-scale morphological reconstruction restrict this method to small sample volumes. Light microscopy (LM) has the potential to bridge the above two spatial scales, with a resolution ranging from a few hundred nanometers to a few micrometers. Recent advances in tissue clearing have paved the way for optical investigation of large intact tissue volumes. However, most of these LM studies rely on fluorescence—a nonlinear optical process to provide contrast. This chapter introduces an alternative type of LM that is solely based on a linear optical process—elastic scattering, which has some unique advantages over conventional LM methods for the investigation of large-scale biological systems, such as intact murine brains. Here, we will first lay out the background and the motivation of developing this scattering-based method. Then, the basic principle of this approach will be introduced, including controlling tissue scattering and coherent imaging. Next, we explore current implementation and practical considerations. Up-to-date results and the utility of this method will also be demonstrated. Finally, we discuss current limitations and future directions in this promising field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAST:

Clearing assisted scattering tomography

CT:

Computed tomography

DOF:

Depth of focus

EM:

Electron microscopy

FDOCT:

Fourier domain optical coherence tomography

FWHM:

Full wave half maximum

LM:

Light microscopy

MRI:

Magnetic resonance imaging

OFDI:

Optical frequency domain imaging

RI:

Refractive index

References

  1. Swanson LW (2012) Brain architecture: understanding the basic plan. Oxford University Press, Oxford

    Google Scholar 

  2. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bohland JW et al (2009) A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol 5(3):e1000334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Craddock RC et al (2013) Imaging human connectomes at the macroscale. Nat Methods 10(6):524–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans R Soc B Biol Sci 314(1165):1–340

    CAS  Google Scholar 

  6. Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10(6):501–507

    Article  PubMed  CAS  Google Scholar 

  7. Osten P, Margrie TW (2013) Mapping brain circuitry with a light microscope. Nat Methods 10(6):515–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li A et al (2010) Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330(6009):1404–1408

    Article  PubMed  CAS  Google Scholar 

  9. Ragan T et al (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9(3):255–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Oh SW et al (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10(6):508–513

    Article  PubMed  CAS  Google Scholar 

  12. Spalteholz W et al (1914) Uber das Durchsichtigmachen von menschlichen und tierischen Praparaten und seine theoretischen Bedingungen, nebst Anhang. S. Hirzel, Leipzig

    Google Scholar 

  13. Richardson DSS, Lichtman JWW (2015) Clarifying tissue clearing. Cell 162(2):246–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ueda HR et al (2020) Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 21:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dodt H-U et al (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331–336

    Article  PubMed  CAS  Google Scholar 

  16. Ertürk A et al (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7(11):1983–1995

    Article  PubMed  CAS  Google Scholar 

  17. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910

    Article  PubMed  CAS  Google Scholar 

  18. Pan C et al (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13(10):859–867

    Article  PubMed  CAS  Google Scholar 

  19. Ke M-T, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16(8):1154–1161

    Article  PubMed  CAS  Google Scholar 

  20. Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C (2013) ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140(6):1364–1368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hama H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488

    Article  PubMed  CAS  Google Scholar 

  22. Susaki EA et al (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157(3):726–739

    Article  PubMed  CAS  Google Scholar 

  23. Chung K et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang B et al (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158(4):945–958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schain AJ, Hill RA, Grutzendler J (2014) Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat Med 20(4):443–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Neil MAA, Juškaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22(24):1905

    Article  PubMed  CAS  Google Scholar 

  27. Sharpe J et al (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567):541–545

    Article  PubMed  CAS  Google Scholar 

  28. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs time domain optical coherence tomography. Opt Express 11(8):889

    Article  PubMed  CAS  Google Scholar 

  29. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28(21):2067

    Article  PubMed  Google Scholar 

  30. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183

    Article  PubMed  Google Scholar 

  31. Jayaraman V et al (2011) OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range. In: Quantum Electronics and Laser Science Conference, p PDPB2

    Google Scholar 

  32. Yun SH, Tearney GJ, de Boer JF, Bouma BE (2004) Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt Express 12(20):4822

    Article  PubMed  CAS  Google Scholar 

  33. Conchello J-A, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2(12):920–931

    Article  PubMed  CAS  Google Scholar 

  34. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  PubMed  CAS  Google Scholar 

  35. Ben Arous J (2011) Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy. J Biomed Opt 16(11):116012

    Article  PubMed  Google Scholar 

  36. Magnain C et al (2014) Blockface histology with optical coherence tomography: a comparison with Nissl staining. NeuroImage 84:524–533

    Article  PubMed  Google Scholar 

  37. Wang H, Zhu J, Akkin T (2014) Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. NeuroImage 84:1007–1017

    Article  PubMed  Google Scholar 

  38. Gleave JA, Lerch JP, Henkelman RM, Nieman BJ (2013) A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells. PLoS One 8:e72039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Murray E et al (2015) Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163(6):1500–1514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim S-Y et al (2015) Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc Natl Acad Sci U S A 112(46):E6274–E6283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ren J, Choi H, Chung K, Bouma BE (2017) Label-free volumetric optical imaging of intact murine brains. Sci Rep 7:46306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rolland JP, Meemon P, Murali S, Thompson KP, Lee K (2010) Gabor-based fusion technique for optical coherence microscopy. Opt Express 18(4):3632

    Article  PubMed  Google Scholar 

  43. Wang H, Lenglet C, Akkin T (2015) Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain. J Biomed Opt 20(3):036003

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(4):312–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, J., Bouma, B.E. (2021). Whole Murine Brain Imaging Based on Optical Elastic Scattering. In: Wei, X., Gu, B. (eds) Optical Imaging in Human Disease and Biological Research. Advances in Experimental Medicine and Biology, vol 3233. Springer, Singapore. https://doi.org/10.1007/978-981-15-7627-0_6

Download citation

Publish with us

Policies and ethics