Skip to main content

The Histone H3 Family and Its Deposition Pathways

  • Chapter
  • First Online:
Histone Mutations and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1283))

Abstract

Within the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. This chromatin organization contributes to the regulation of all DNA template-based reactions impacting genome function, stability, and plasticity. Histones and their variants endow chromatin with unique properties and show a distinct distribution into the genome that is regulated by dedicated deposition machineries. The histone variants have important roles during early development, cell differentiation, and chromosome segregation. Recent progress has also shed light on how mutations and transcriptional deregulation of these variants participate in tumorigenesis. In this chapter we introduce the organization of the genome in chromatin with a focus on the basic unit, the nucleosome, which contains histones as the major protein component. Then we review our current knowledge on the histone H3 family and its variants—in particular H3.3 and CenH3CENP-A—focusing on their deposition pathways and their dedicated histone chaperones that are key players in histone dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ChIP-seq:

Chromatin immunoprecipitation sequencing

DSC:

DNA synthesis coupled

DSI:

DNA synthesis independent

ES:

Embryonic stem

KO:

Knockout

NCP:

Nucleosome core particle

PTM:

Posttranslational modification

References

  1. Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F C W Vogel

    Book  Google Scholar 

  2. Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300

    Article  CAS  Google Scholar 

  3. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  CAS  Google Scholar 

  4. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. https://doi.org/10.1038/38444

    Article  CAS  Google Scholar 

  5. Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    Article  CAS  Google Scholar 

  6. Heitz E (1928) Das heterochromatin der Moose. Jahrbücher für wissenschaftliche Botanik 69:762–818

    Google Scholar 

  7. Furlong EEM, Levine M (2018) Developmental enhancers and chromosome topology. Science 361:1341–1345. https://doi.org/10.1126/science.aau0320

    Article  CAS  Google Scholar 

  8. Solovei I, Thanisch K, Feodorova Y (2016) How to rule the nucleus: divide et impera. Curr Opin Cell Biol 40:47–59. https://doi.org/10.1016/j.ceb.2016.02.014

    Article  CAS  Google Scholar 

  9. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500. https://doi.org/10.1038/nrg.2016.59

    Article  CAS  Google Scholar 

  10. Sitbon D, Podsypanina K, Yadav T, Almouzni G (2017) Shaping chromatin in the nucleus: the bricks and the architects. Cold Spring Harb Symp Quant Biol 82:1–14. https://doi.org/10.1101/sqb.2017.82.033753

    Article  Google Scholar 

  11. Yadav T, Quivy JP, Almouzni G (2018) Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361:1332–1336. https://doi.org/10.1126/science.aat8950

    Article  CAS  Google Scholar 

  12. Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19:789–800. https://doi.org/10.1038/s41576-018-0060-8

    Article  CAS  Google Scholar 

  13. Waterborg JH (2012) Evolution of histone H3: emergence of variants and conservation of post-translational modification sites. Biochem Cell Biol 90:79–95. https://doi.org/10.1139/o11-036

    Article  CAS  Google Scholar 

  14. Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 a resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88:10148–10152

    Article  CAS  Google Scholar 

  15. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266. https://doi.org/10.1038/nsmb.2470

    Article  CAS  Google Scholar 

  16. Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, Zhang B, Loh YE, Ramakrishnan A, Vadodaria KC, Heard KJ, Erikson G, Nakadai T, Bastle RM, Lukasak BJ, Zebroski H 3rd, Alenina N, Bader M, Berton O, Roeder RG, Molina H, Gage FH, Shen L, Garcia BA, Li H, Muir TW, Maze I (2019) Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567:535–539. https://doi.org/10.1038/s41586-019-1024-7

    Article  CAS  Google Scholar 

  17. Turner BM (1993) Decoding the nucleosome. Cell 75:5–8

    Article  CAS  Google Scholar 

  18. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45. https://doi.org/10.1038/47412

    Article  CAS  Google Scholar 

  19. Talbert PB, Henikoff S (2010) Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275. https://doi.org/10.1038/nrm2861

    Article  CAS  Google Scholar 

  20. Mendiratta S, Gatto A, Almouzni G (2019) Histone supply: multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 218:39–54. https://doi.org/10.1083/jcb.201807179

    Article  CAS  Google Scholar 

  21. Marzluff WF, Koreski KP (2017) Birth and death of histone mRNAs. Trends Genet 33:745–759. https://doi.org/10.1016/j.tig.2017.07.014

    Article  CAS  Google Scholar 

  22. Pandey NB, Marzluff WF (1987) The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol Cell Biol 7:4557–4559

    CAS  Google Scholar 

  23. Franklin SG, Zweidler A (1977) Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 266:273–275

    Article  CAS  Google Scholar 

  24. Gurard-Levin ZA, Quivy JP, Almouzni G (2014) Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 83:487–517. https://doi.org/10.1146/annurev-biochem-060713-035536

    Article  CAS  Google Scholar 

  25. Filipescu D, Muller S, Almouzni G (2014) Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. Annu Rev Cell Dev Biol 30:615–646. https://doi.org/10.1146/annurev-cellbio-100913-013311

    Article  CAS  Google Scholar 

  26. Buschbeck M, Hake SB (2017) Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 18:299–314. https://doi.org/10.1038/nrm.2016.166

    Article  CAS  Google Scholar 

  27. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Baker SJ (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. https://doi.org/10.1038/ng.1102

    Article  CAS  Google Scholar 

  28. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  Google Scholar 

  29. Fontebasso AM, Gayden T, Nikbakht H, Neirinck M, Papillon-Cavanagh S, Majewski J, Jabado N (2014) Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathol 128:615–627. https://doi.org/10.1007/s00401-014-1325-8

    Article  CAS  Google Scholar 

  30. Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, Iavarone A, Aldape K, Brennan CW, Jabado N, Pfister SM (2014) Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14:92–107. https://doi.org/10.1038/nrc3655

    Article  CAS  Google Scholar 

  31. Nikbakht H, Panditharatna E, Mikael LG, Li R, Gayden T, Osmond M, Ho CY, Kambhampati M, Hwang EI, Faury D, Siu A, Papillon-Cavanagh S, Bechet D, Ligon KL, Ellezam B, Ingram WJ, Stinson C, Moore AS, Warren KE, Karamchandani J, Packer RJ, Jabado N, Majewski J, Nazarian J (2016) Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 7:11185. https://doi.org/10.1038/ncomms11185

    Article  CAS  Google Scholar 

  32. Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen CCL, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J (2019) H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 10:1262. https://doi.org/10.1038/s41467-019-09140-x

    Article  CAS  Google Scholar 

  33. Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao J, Soshnev AA, Kundra R, Schultz N, Muir TW, Allis CD (2019) The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567:473–478. https://doi.org/10.1038/s41586-019-1038-1

    Article  CAS  Google Scholar 

  34. Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229:301–306. https://doi.org/10.1006/excr.1996.0375

    Article  CAS  Google Scholar 

  35. Urahama T, Harada A, Maehara K, Horikoshi N, Sato K, Sato Y, Shiraishi K, Sugino N, Osakabe A, Tachiwana H, Kagawa W, Kimura H, Ohkawa Y, Kurumizaka H (2016) Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics Chromatin 9:2. https://doi.org/10.1186/s13072-016-0051-y

    Article  CAS  Google Scholar 

  36. Wiedemann SM, Mildner SN, Bonisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E, Schermelleh L, Hake SB (2010) Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol 190:777–791. https://doi.org/10.1083/jcb.201002043

    Article  CAS  Google Scholar 

  37. Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568. https://doi.org/10.1074/jbc.M509266200

    Article  CAS  Google Scholar 

  38. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication- independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  CAS  Google Scholar 

  39. Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LE, Almouzni G (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44:928–941. https://doi.org/10.1016/j.molcel.2011.12.006

    Article  CAS  Google Scholar 

  40. Latreille D, Bluy L, Benkirane M, Kiernan RE (2014) Identification of histone 3 variant 2 interacting factors. Nucleic Acids Res 42:3542–3550. https://doi.org/10.1093/nar/gkt1355

    Article  CAS  Google Scholar 

  41. Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493. https://doi.org/10.1016/j.cell.2006.08.049

    Article  CAS  Google Scholar 

  42. Polo SE, Almouzni G (2015) Chromatin dynamics after DNA damage: the legacy of the access-repair-restore model. DNA Repair 36:114–121. https://doi.org/10.1016/j.dnarep.2015.09.014

    Article  CAS  Google Scholar 

  43. Adam S, Dabin J, Chevallier O, Leroy O, Baldeyron C, Corpet A, Lomonte P, Renaud O, Almouzni G, Polo SE (2016) Real-time tracking of parental histones reveals their contribution to chromatin integrity following DNA damage. Mol Cell 64:65–78. https://doi.org/10.1016/j.molcel.2016.08.019

    Article  CAS  Google Scholar 

  44. Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci U S A 102:6344–6349. https://doi.org/10.1073/pnas.0502413102

    Article  CAS  Google Scholar 

  45. Thorne JL, Ouboussad L, Lefevre PF (2012) Heterochromatin protein 1 gamma and IkappaB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages. Nucleic Acids Res 40:7676–7689. https://doi.org/10.1093/nar/gks509

    Article  CAS  Google Scholar 

  46. Truong DM, Boeke JD (2017) Resetting the yeast epigenome with human nucleosomes. Cell 171(1508–1519):e1513. https://doi.org/10.1016/j.cell.2017.10.043

    Article  CAS  Google Scholar 

  47. Bramlage B, Kosciessa U, Doenecke D (1997) Differential expression of the murine histone genes H3.3A and H3.3B. Differentiation 62:13–20

    Article  CAS  Google Scholar 

  48. Jang CW, Shibata Y, Starmer J, Yee D, Magnuson T (2015) Histone H3.3 maintains genome integrity during mammalian development. Genes Dev 29:1377–1392. https://doi.org/10.1101/gad.264150.115

    Article  CAS  Google Scholar 

  49. Maehara K, Harada A, Sato Y, Matsumoto M, Nakayama KI, Kimura H, Ohkawa Y (2015) Tissue-specific expression of histone H3 variants diversified after species separation. Epigenetics Chromatin 8:35. https://doi.org/10.1186/s13072-015-0027-3

    Article  CAS  Google Scholar 

  50. Wu RS, Tsai S, Bonner WM (1982) Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell 31:367–374

    Article  CAS  Google Scholar 

  51. Rogakou EP, Sekeri-Pataryas KE (1999) Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp Gerontol 34:741–754

    Article  CAS  Google Scholar 

  52. Pina B, Suau P (1987) Changes in the proportions of histone H1 subtypes in brain cortical neurons. FEBS Lett 210:161–164

    Article  CAS  Google Scholar 

  53. Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390. https://doi.org/10.1038/nature04059

    Article  CAS  Google Scholar 

  54. Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461. https://doi.org/10.1387/ijdb.052073mt

    Article  CAS  Google Scholar 

  55. van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022. https://doi.org/10.1016/j.mod.2005.04.009

    Article  CAS  Google Scholar 

  56. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691. https://doi.org/10.1016/j.cell.2010.01.003

    Article  CAS  Google Scholar 

  57. Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265. https://doi.org/10.1101/gad.566910

    Article  CAS  Google Scholar 

  58. Tachiwana H, Osakabe A, Shiga T, Miya Y, Kimura H, Kagawa W, Kurumizaka H (2011) Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr D Biol Crystallogr 67:578–583. https://doi.org/10.1107/S0907444911014818

    Article  CAS  Google Scholar 

  59. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21:1519–1529. https://doi.org/10.1101/gad.1547707

    Article  CAS  Google Scholar 

  60. Chen P, Zhao J, Wang Y, Wang M, Long H, Liang D, Huang L, Wen Z, Li W, Li X, Feng H, Zhao H, Zhu P, Li M, Wang QF, Li G (2013) H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27:2109–2124. https://doi.org/10.1101/gad.222174.113

    Article  CAS  Google Scholar 

  61. Szenker E, Lacoste N, Almouzni G (2012) A developmental requirement for HIRA- dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep 1:730–740. https://doi.org/10.1016/j.celrep.2012.05.006

    Article  CAS  Google Scholar 

  62. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Article  CAS  Google Scholar 

  63. Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88:3734–3738

    Article  CAS  Google Scholar 

  64. Wolffe AP (1995) Centromeric chromatin. Histone deviants. Curr Biol 5:452–454

    Article  CAS  Google Scholar 

  65. Drinnenberg IA, Henikoff S, Malik HS (2016) Evolutionary turnover of kinetochore proteins: a ship of Theseus? Trends Cell Biol 26:498–510. https://doi.org/10.1016/j.tcb.2016.01.005

    Article  CAS  Google Scholar 

  66. Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, Kimura H, Kurumizaka H (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235. https://doi.org/10.1038/nature10258

    Article  CAS  Google Scholar 

  67. Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, Cantaloube S, Kurumizaka H, Imhof A, Almouzni G (2014) Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell 53:631–644. https://doi.org/10.1016/j.molcel.2014.01.018

    Article  CAS  Google Scholar 

  68. Geiss CP, Keramisanou D, Sekulic N, Scheffer MP, Black BE, Frangakis AS (2014) CENP-A arrays are more condensed than canonical arrays at low ionic strength. Biophys J 106:875–882. https://doi.org/10.1016/j.bpj.2014.01.005

    Article  CAS  Google Scholar 

  69. Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805. https://doi.org/10.1083/jcb.200701066

    Article  CAS  Google Scholar 

  70. Muller S, Almouzni G (2017) Chromatin dynamics during the cell cycle at centromeres. Nat Rev Genet 18:192–208. https://doi.org/10.1038/nrg.2016.157

    Article  CAS  Google Scholar 

  71. Hoffmann S, Dumont M, Barra V, Ly P, Nechemia-Arbely Y, McMahon MA, Herve S, Cleveland DW, Fachinetti D (2016) CENP-A is dispensable for mitotic centromere function after initial centromere/kinetochore assembly. Cell Rep 17:2394–2404. https://doi.org/10.1016/j.celrep.2016.10.084

    Article  CAS  Google Scholar 

  72. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH (2000) Early disruption of centromeric chromatin organization in centromere protein a (Cenpa) null mice. Proc Natl Acad Sci U S A 97:1148–1153

    Article  CAS  Google Scholar 

  73. Gurard-Levin ZA, Almouzni G (2014) Histone modifications and a choice of variant: a language that helps the genome express itself. F1000Prime Rep 6:76. https://doi.org/10.12703/P6-76

    Article  CAS  Google Scholar 

  74. Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237–243

    Article  CAS  Google Scholar 

  75. De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14:997–1007. https://doi.org/10.1038/nsmb1318

    Article  CAS  Google Scholar 

  76. Dilworth SM, Black SJ, Laskey RA (1987) Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell 51:1009–1018

    Article  CAS  Google Scholar 

  77. Hammond CM, Stromme CB, Huang H, Patel DJ, Groth A (2017) Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 18:141–158. https://doi.org/10.1038/nrm.2016.159

    Article  CAS  Google Scholar 

  78. Grover P, Asa JS, Campos EI (2018) H3-H4 histone chaperone pathways. Annu Rev Genet 52:109–130. https://doi.org/10.1146/annurev-genet-120417-031547

    Article  CAS  Google Scholar 

  79. Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    Article  CAS  Google Scholar 

  80. Moggs JG, Grandi P, Quivy JP, Jonsson ZO, Hubscher U, Becker PB, Almouzni G (2000) A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20:1206–1218

    Article  CAS  Google Scholar 

  81. Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–585

    Article  CAS  Google Scholar 

  82. Gerard A, Koundrioukoff S, Ramillon V, Sergere JC, Mailand N, Quivy JP, Almouzni G (2006) The replication kinase Cdc7-Dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Rep 7:817–823. https://doi.org/10.1038/sj.embor.7400750

    Article  CAS  Google Scholar 

  83. Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20:2015–2027. https://doi.org/10.1093/emboj/20.8.2015

    Article  CAS  Google Scholar 

  84. Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G (2004) A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 23:3516–3526. https://doi.org/10.1038/sj.emboj.7600362

    Article  CAS  Google Scholar 

  85. Quivy JP, Gerard A, Cook AJ, Roche D, Almouzni G (2008) The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 15:972–979

    Article  CAS  Google Scholar 

  86. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347

    Article  CAS  Google Scholar 

  87. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  CAS  Google Scholar 

  88. Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill ME (2018) Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res 46:9907–9917. https://doi.org/10.1093/nar/gky823

    Article  CAS  Google Scholar 

  89. Houlard M, Berlivet S, Probst AV, Quivy JP, Hery P, Almouzni G, Gerard M (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2:e181. https://doi.org/10.1371/journal.pgen.0020181

    Article  CAS  Google Scholar 

  90. Ishiuchi T, Enriquez-Gasca R, Mizutani E, Boskovic A, Ziegler-Birling C, Rodriguez-Terrones D, Wakayama T, Vaquerizas JM, Torres-Padilla ME (2015) Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 22:662–671. https://doi.org/10.1038/nsmb.3066

    Article  CAS  Google Scholar 

  91. Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K (2015) The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528:218–224. https://doi.org/10.1038/nature15749

    Article  CAS  Google Scholar 

  92. Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, Mesa KR, Liao W, Quivy JP, Hubert B, Almouzni G, Zuber J, Littman DR (2019) The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells. Genes Dev. https://doi.org/10.1101/gad.322024.118

  93. Ricketts MD, Marmorstein R (2017) A molecular prospective for HIRA complex assembly and H3.3-specific histone chaperone function. J Mol Biol 429:1924–1933. https://doi.org/10.1016/j.jmb.2016.11.010

    Article  CAS  Google Scholar 

  94. Dyer MA, Qadeer ZA, Valle-Garcia D, Bernstein E (2017) ATRX and DAXX: mechanisms and mutations. Cold Spring Harb Perspect Med 7. https://doi.org/10.1101/cshperspect.a026567

  95. Lamour V, Lecluse Y, Desmaze C, Spector M, Bodescot M, Aurias A, Osley MA, Lipinski M (1995) A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum Mol Genet 4:791–799

    Article  CAS  Google Scholar 

  96. Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100

    Article  CAS  Google Scholar 

  97. Banumathy G, Somaiah N, Zhang R, Tang Y, Hoffmann J, Andrake M, Ceulemans H, Schultz D, Marmorstein R, Adams PD (2009) Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells. Mol Cell Biol 29:758–770. https://doi.org/10.1128/MCB.01047-08

    Article  CAS  Google Scholar 

  98. Rai TS, Puri A, McBryan T, Hoffman J, Tang Y, Pchelintsev NA, van Tuyn J, Marmorstein R, Schultz DC, Adams PD (2011) Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol Cell Biol 31:4107–4118. https://doi.org/10.1128/MCB.05546-11

    Article  Google Scholar 

  99. Aho S, Buisson M, Pajunen T, Ryoo YW, Giot JF, Gruffat H, Sergeant A, Uitto J (2000) Ubinuclein, a novel nuclear protein interacting with cellular and viral transcription factors. J Cell Biol 148:1165–1176

    Article  CAS  Google Scholar 

  100. Balaji S, Iyer LM, Aravind L (2009) HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes. Mol BioSyst 5:269–275. https://doi.org/10.1039/b816424j

    Article  CAS  Google Scholar 

  101. Ricketts MD, Frederick B, Hoff H, Tang Y, Schultz DC, Singh Rai T, Grazia Vizioli M, Adams PD, Marmorstein R (2015) Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat Commun 6:7711. https://doi.org/10.1038/ncomms8711

    Article  Google Scholar 

  102. Sun L, Youn HD, Loh C, Stolow M, He W, Liu JO (1998) Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8:703–711

    Article  CAS  Google Scholar 

  103. Amin AD, Vishnoi N, Prochasson P (2013) A global requirement for the HIR complex in the assembly of chromatin. Biochim Biophys Acta 1819:264–276

    Article  Google Scholar 

  104. Ray-Gallet D, Ricketts MD, Sato Y, Gupta K, Boyarchuk E, Senda T, Marmorstein R, Almouzni G (2018) Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. Nat Commun 9:3103. https://doi.org/10.1038/s41467-018-05581-y

    Article  CAS  Google Scholar 

  105. Xiong C, Wen Z, Yu J, Chen J, Liu CP, Zhang X, Chen P, Xu RM, Li G (2018) UBN1/2 of HIRA complex is responsible for recognition and deposition of H3.3 at cis-regulatory elements of genes in mouse ES cells. BMC Biol 16:110. https://doi.org/10.1186/s12915-018-0573-9

    Article  CAS  Google Scholar 

  106. Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S, Carey A, Brickman JM, Wynshaw-Boris A, Scambler PJ (2002) Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol 22:2318–2328

    Article  CAS  Google Scholar 

  107. Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067–1076

    Article  CAS  Google Scholar 

  108. Weatherall DJ, Higgs DR, Bunch C, Old JM, Hunt DM, Pressley L, Clegg JB, Bethlenfalvay NC, Sjolin S, Koler RD, Magenis E, Francis JL, Bebbington D (1981) Hemoglobin H disease and mental retardation: a new syndrome or a remarkable coincidence? N Engl J Med 305:607–612. https://doi.org/10.1056/NEJM198109103051103

    Article  CAS  Google Scholar 

  109. Gibbons RJ, Picketts DJ, Villard L, Higgs DR (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80:837–845

    Article  CAS  Google Scholar 

  110. Picketts DJ, Higgs DR, Bachoo S, Blake DJ, Quarrell OW, Gibbons RJ (1996) ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum Mol Genet 5:1899–1907

    Article  CAS  Google Scholar 

  111. Langst G, Manelyte L (2015) Chromatin Remodelers: from function to dysfunction. Genes 6:299–324. https://doi.org/10.3390/genes6020299

    Article  CAS  Google Scholar 

  112. Elsaesser SJ, Allis CD (2010) HIRA and Daxx constitute two independent histone H3.3- containing predeposition complexes. Cold Spring Harb Symp Quant Biol. https://doi.org/10.1101/sqb.2010.75.008

  113. Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S, Qin J, Zhou S, Higgs D, Wang W (2003) The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100:10635–10640. https://doi.org/10.1073/pnas.1937626100

    Article  CAS  Google Scholar 

  114. Elsasser SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ (2012) DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491:560–565. https://doi.org/10.1038/nature11608

    Article  CAS  Google Scholar 

  115. Liu CP, Xiong C, Wang M, Yu Z, Yang N, Chen P, Zhang Z, Li G, Xu RM (2012) Structure of the variant histone H3.3-H4 heterodimer in complex with its chaperone DAXX. Nat Struct Mol Biol 19:1287–1292. https://doi.org/10.1038/nsmb.2439

    Article  CAS  Google Scholar 

  116. Arimura Y, Shirayama K, Horikoshi N, Fujita R, Taguchi H, Kagawa W, Fukagawa T, Almouzni G, Kurumizaka H (2014) Crystal structure and stable property of the cancer-associated heterotypic nucleosome containing CENP-A and H3.3. Sci Rep 4:7115. https://doi.org/10.1038/srep07115

    Article  Google Scholar 

  117. Athwal RK, Walkiewicz MP, Baek S, Fu S, Bui M, Camps J, Ried T, Sung MH, Dalal Y (2015) CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8:2. https://doi.org/10.1186/1756-8935-8-2

    Article  CAS  Google Scholar 

  118. Shrestha RL, Ahn GS, Staples MI, Sathyan KM, Karpova TS, Foltz DR, Basrai MA (2017) Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells. Oncotarget 8:46781–46800. https://doi.org/10.18632/oncotarget.18108

    Article  Google Scholar 

  119. Sharma AB, Dimitrov S, Hamiche A, Van Dyck E (2018) Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1298

  120. Hoelper D, Huang H, Jain AY, Patel DJ, Lewis PW (2017) Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX. Nat Commun 8:1193. https://doi.org/10.1038/s41467-017-01206-y

    Article  CAS  Google Scholar 

  121. Michaelson JS, Bader D, Kuo F, Kozak C, Leder P (1999) Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923

    Article  CAS  Google Scholar 

  122. Garrick D, Sharpe JA, Arkell R, Dobbie L, Smith AJ, Wood WG, Higgs DR, Gibbons RJ (2006) Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2:e58. https://doi.org/10.1371/journal.pgen.0020058

    Article  CAS  Google Scholar 

  123. Voon HP, Hughes JR, Rode C, De La Rosa-Velazquez IA, Jenuwein T, Feil R, Higgs DR, Gibbons RJ (2015) ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep 11:405–418. https://doi.org/10.1016/j.celrep.2015.03.036

    Article  CAS  Google Scholar 

  124. Kato T, Sato N, Hayama S, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y, Daigo Y (2007) Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67:8544–8553. https://doi.org/10.1158/0008-5472.CAN-07-1307

    Article  CAS  Google Scholar 

  125. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497. https://doi.org/10.1016/j.cell.2009.02.040

    Article  CAS  Google Scholar 

  126. Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484. https://doi.org/10.1016/j.cell.2009.02.039

    Article  CAS  Google Scholar 

  127. Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322. https://doi.org/10.1016/j.molcel.2006.12.018

    Article  CAS  Google Scholar 

  128. Hu H, Liu Y, Wang M, Fang J, Huang H, Yang N, Li Y, Wang J, Yao X, Shi Y, Li G, Xu RM (2011) Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev 25:901–906. https://doi.org/10.1101/gad.2045111

    Article  CAS  Google Scholar 

  129. Zasadzinska E, Barnhart-Dailey MC, Kuich PH, Foltz DR (2013) Dimerization of the CENP- a assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J 32:2113–2124. https://doi.org/10.1038/emboj.2013.142

    Article  CAS  Google Scholar 

  130. Tachiwana H, Muller S, Blumer J, Klare K, Musacchio A, Almouzni G (2015) HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. Cell Rep 11:22–32. https://doi.org/10.1016/j.celrep.2015.03.013

    Article  CAS  Google Scholar 

  131. Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042

    Article  CAS  Google Scholar 

  132. Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446:338–341. https://doi.org/10.1038/nature05613

    Article  CAS  Google Scholar 

  133. English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508. https://doi.org/10.1016/j.cell.2006.08.047

    Article  CAS  Google Scholar 

  134. Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560. https://doi.org/10.1038/990147

    Article  CAS  Google Scholar 

  135. Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:329–334

    Article  CAS  Google Scholar 

  136. Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F, Rico D, Valencia A, Almouzni G (2013) Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Mol Biol Evol 30:1853–1866. https://doi.org/10.1093/molbev/mst086

    Article  CAS  Google Scholar 

  137. Daganzo SM, Erzberger JP, Lam WM, Skordalakes E, Zhang R, Franco AA, Brill SJ, Adams PD, Berger JM, Kaufman PD (2003) Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol 13:2148–2158

    Article  CAS  Google Scholar 

  138. Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R (2006) Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat Struct Mol Biol 13:921–929. https://doi.org/10.1038/nsmb1147

    Article  CAS  Google Scholar 

  139. Mousson F, Lautrette A, Thuret JY, Agez M, Courbeyrette R, Amigues B, Becker E, Neumann JM, Guerois R, Mann C, Ochsenbein F (2005) Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc Natl Acad Sci U S A 102:5975–5980. https://doi.org/10.1073/pnas.0500149102

    Article  CAS  Google Scholar 

  140. Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G (2007) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931. https://doi.org/10.1126/science.1148992

    Article  CAS  Google Scholar 

  141. Clement C, Orsi GA, Gatto A, Boyarchuk E, Forest A, Hajj B, Mine-Hattab J, Garnier M, Gurard-Levin ZA, Quivy JP, Almouzni G (2018) High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat Commun 9:3181. https://doi.org/10.1038/s41467-018-05697-1

    Article  CAS  Google Scholar 

  142. Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C (2017) From structure to mechanism-understanding initiation of DNA replication. Genes Dev 31:1073–1088. https://doi.org/10.1101/gad.298232.117

    Article  CAS  Google Scholar 

  143. Ishimi Y, Komamura-Kohno Y, Arai K, Masai H (2001) Biochemical activities associated with mouse Mcm2 protein. J Biol Chem 276:42744–42752. https://doi.org/10.1074/jbc.M106861200

    Article  CAS  Google Scholar 

  144. Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K (2013) Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3:892–904. https://doi.org/10.1016/j.celrep.2013.02.028

    Article  CAS  Google Scholar 

  145. Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, Chen S, Groth A, Patel DJ (2015) A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 22:618–626. https://doi.org/10.1038/nsmb.3055

    Article  CAS  Google Scholar 

  146. Richet N, Liu D, Legrand P, Velours C, Corpet A, Gaubert A, Bakail M, Moal-Raisin G, Guerois R, Compper C, Besle A, Guichard B, Almouzni G, Ochsenbein F (2015) Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res 43:1905–1917. https://doi.org/10.1093/nar/gkv021

    Article  CAS  Google Scholar 

  147. Clement C, Almouzni G (2015) MCM2 binding to histones H3-H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat Struct Mol Biol 22:587–589. https://doi.org/10.1038/nsmb.3067

    Article  CAS  Google Scholar 

  148. Li Y, Pursell ZF, Linn S (2000) Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J Biol Chem 275:31554

    Article  CAS  Google Scholar 

  149. Bellelli R, Belan O, Pye VE, Clement C, Maslen SL, Skehel JM, Cherepanov P, Almouzni G, Boulton SJ (2018) POLE3-POLE4 is a histone H3-H4 chaperone that maintains chromatin integrity during DNA replication. Mol Cell 72(112–126):e115. https://doi.org/10.1016/j.molcel.2018.08.043

    Article  CAS  Google Scholar 

  150. Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S, Sharma S, Johansson E, Chabes A, Xu RM, Zhang Z (2018) A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361:1386–1389. https://doi.org/10.1126/science.aat8849

    Article  CAS  Google Scholar 

  151. Torne J, Orsi GA, Ray-Gallet D, Almouzni G (2018) Imaging newly synthesized and old histone variant dynamics dependent on chaperones using the SNAP-tag system. Methods Mol Biol 1832:207–221. https://doi.org/10.1007/978-1-4939-8663-7_11

    Article  CAS  Google Scholar 

  152. Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86:887–896

    Article  CAS  Google Scholar 

  153. Martini E, Roche DM, Marheineke K, Verreault A, Almouzni G (1998) Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J Cell Biol 143:563–575

    Article  CAS  Google Scholar 

  154. Keller C, Krude T (2000) Requirement of Cyclin/Cdk2 and protein phosphatase 1 activity for chromatin assembly factor 1-dependent chromatin assembly during DNA synthesis. J Biol Chem 275:35512–35521. https://doi.org/10.1074/jbc.M003073200

    Article  CAS  Google Scholar 

  155. Sarai N, Nimura K, Tamura T, Kanno T, Patel MC, Heightman TD, Ura K, Ozato K (2013) WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition. EMBO J 32:2392–2406. https://doi.org/10.1038/emboj.2013.176

    Article  CAS  Google Scholar 

  156. Zhang H, Gan H, Wang Z, Lee JH, Zhou H, Ordog T, Wold MS, Ljungman M, Zhang Z (2017) RPA interacts with HIRA and regulates H3.3 deposition at gene regulatory elements in mammalian cells. Mol Cell 65:272–284. https://doi.org/10.1016/j.molcel.2016.11.030

    Article  CAS  Google Scholar 

  157. Soni S, Pchelintsev N, Adams PD, Bieker JJ (2014) Transcription factor EKLF (KLF1) recruitment of the histone chaperone HIRA is essential for beta-globin gene expression. Proc Natl Acad Sci USA 111:13337–13342. https://doi.org/10.1073/pnas.1405422111

    Article  CAS  Google Scholar 

  158. Lee JS, Zhang Z (2016) O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. Proc Natl Acad Sci USA 113:E3213–E3220. https://doi.org/10.1073/pnas.1600509113

    Article  CAS  Google Scholar 

  159. Yang JH, Song TY, Jo C, Park J, Lee HY, Song I, Hong S, Jung KY, Kim J, Han JW, Youn HD, Cho EJ (2016) Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med 48:e252. https://doi.org/10.1038/emm.2016.68

    Article  CAS  Google Scholar 

  160. Adam S, Polo SE, Almouzni G (2013) Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155:94–106. https://doi.org/10.1016/j.cell.2013.08.029

    Article  CAS  Google Scholar 

  161. Cohen C, Corpet A, Roubille S, Maroui MA, Poccardi N, Rousseau A, Kleijwegt C, Binda O, Texier P, Sawtell N, Labetoulle M, Lomonte P (2018) Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/histone H3.3/H3.3 chaperone Axis. PLoS Pathog 14:e1007313. https://doi.org/10.1371/journal.ppat.1007313

    Article  CAS  Google Scholar 

  162. Rai TS, Glass M, Cole JJ, Rather MI, Marsden M, Neilson M, Brock C, Humphreys IR, Everett RD, Adams PD (2017) Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity. Nucleic Acids Res 45:11673–11683. https://doi.org/10.1093/nar/gkx771

    Article  CAS  Google Scholar 

  163. Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, Berger SL (2009) The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol 83:1416–1421. https://doi.org/10.1128/JVI.01276-08

    Article  CAS  Google Scholar 

  164. Schneiderman JI, Orsi GA, Hughes KT, Loppin B, Ahmad K (2012) Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci USA 109:19721–19726. https://doi.org/10.1073/pnas.1206629109

    Article  Google Scholar 

  165. Boyarchuk E, Filipescu D, Vassias I, Cantaloube S, Almouzni G (2014) The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle. J Cell Sci 127:3347–3359. https://doi.org/10.1242/jcs.148189

    Article  CAS  Google Scholar 

  166. Law MJ, Lower KM, Voon HP, Hughes JR, Garrick D, Viprakasit V, Mitson M, De Gobbi M, Marra M, Morris A, Abbott A, Wilder SP, Taylor S, Santos GM, Cross J, Ayyub H, Jones S, Ragoussis J, Rhodes D, Dunham I, Higgs DR, Gibbons RJ (2010) ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143:367–378. https://doi.org/10.1016/j.cell.2010.09.023

    Article  CAS  Google Scholar 

  167. Elsasser SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA (2015) Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522:240–244. https://doi.org/10.1038/nature14345

    Article  CAS  Google Scholar 

  168. Clynes D, Jelinska C, Xella B, Ayyub H, Scott C, Mitson M, Taylor S, Higgs DR, Gibbons RJ (2015) Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun 6:7538. https://doi.org/10.1038/ncomms8538

    Article  Google Scholar 

  169. Sadic D, Schmidt K, Groh S, Kondofersky I, Ellwart J, Fuchs C, Theis FJ, Schotta G (2015) Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep 16:836–850. https://doi.org/10.15252/embr.201439937

    Article  CAS  Google Scholar 

  170. Michod D, Bartesaghi S, Khelifi A, Bellodi C, Berliocchi L, Nicotera P, Salomoni P (2012) Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74:122–135. https://doi.org/10.1016/j.neuron.2012.02.021

    Article  CAS  Google Scholar 

  171. Muller S, Montes de Oca R, Lacoste N, Dingli F, Loew D, Almouzni G (2014) Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell Rep 8:190–203. https://doi.org/10.1016/j.celrep.2014.06.002

    Article  CAS  Google Scholar 

  172. Wang J, Liu X, Dou Z, Chen L, Jiang H, Fu C, Fu G, Liu D, Zhang J, Zhu T, Fang J, Zang J, Cheng J, Teng M, Ding X, Yao X (2014) Mitotic regulator Mis18beta interacts with and specifies the centromeric assembly of molecular chaperone Holliday junction recognition protein (HJURP). J Biol Chem 289:8326–8336. https://doi.org/10.1074/jbc.M113.529958

    Article  CAS  Google Scholar 

  173. Yu Z, Zhou X, Wang W, Deng W, Fang J, Hu H, Wang Z, Li S, Cui L, Shen J, Zhai L, Peng S, Wong J, Dong S, Yuan Z, Ou G, Zhang X, Xu P, Lou J, Yang N, Chen P, Xu RM, Li G (2015) Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev Cell 32:68–81. https://doi.org/10.1016/j.devcel.2014.11.030

    Article  CAS  Google Scholar 

  174. Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K (2015) CENP-A K124 Ubiquitylation is required for CENP-A deposition at the centromere. Dev Cell 32:589–603. https://doi.org/10.1016/j.devcel.2015.01.024

    Article  CAS  Google Scholar 

  175. Zasadzinska E, Huang J, Bailey AO, Guo LY, Lee NS, Srivastava S, Wong KA, French BT, Black BE, Foltz DR (2018) Inheritance of CENP-A nucleosomes during DNA replication requires HJURP. Dev Cell 47(348-362):e347. https://doi.org/10.1016/j.devcel.2018.09.003

    Article  CAS  Google Scholar 

  176. Dunleavy EM, Almouzni G, Karpen GH (2011) H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus 2:1–12

    Article  Google Scholar 

  177. Annunziato AT, Schindler RK, Riggs MG, Seale RL (1982) Association of newly synthesized histones with replicating and nonreplicating regions of chromatin. J Biol Chem 257:8507–8515

    Article  CAS  Google Scholar 

  178. Jackson V, Chalkley R (1981) A reevaluation of new histone deposition on replicating chromatin. J Biol Chem 256:5095–5103

    Article  CAS  Google Scholar 

  179. Reveron-Gomez N, Gonzalez-Aguilera C, Stewart-Morgan KR, Petryk N, Flury V, Graziano S, Johansen JV, Jakobsen JS, Alabert C, Groth A (2018) Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol Cell 72(239–249):e235. https://doi.org/10.1016/j.molcel.2018.08.010

    Article  CAS  Google Scholar 

  180. Xu M, Long C, Chen X, Huang C, Chen S, Zhu B (2010) Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328:94–98. https://doi.org/10.1126/science.1178994

    Article  CAS  Google Scholar 

  181. Ray-Gallet D, Almouzni G (2010) Molecular biology. Mixing or not mixing. Science 328:56–57. https://doi.org/10.1126/science.1188653

    Article  CAS  Google Scholar 

  182. Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K, Yu C, Zhang Z (2018) The Mcm2-Ctf4- Polalpha axis facilitates parental histone H3-H4 transfer to lagging strands. Mol Cell 72(140–151):e143. https://doi.org/10.1016/j.molcel.2018.09.001

    Article  CAS  Google Scholar 

  183. Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A, Andersson R, Groth A (2018) MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361:1389–1392. https://doi.org/10.1126/science.aau0294

    Article  CAS  Google Scholar 

  184. Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D, Labib K, Costa A, Pellegrini L (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510:293–297. https://doi.org/10.1038/nature13234

    Article  CAS  Google Scholar 

  185. Ahmad K, Henikoff S (2018) No strand left behind. Science 361:1311–1312. https://doi.org/10.1126/science.aav0871

    Article  CAS  Google Scholar 

  186. Tran V, Lim C, Xie J, Chen X (2012) Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–682. https://doi.org/10.1126/science.1226028

    Article  CAS  Google Scholar 

  187. Garcia Del Arco A, Edgar BA, Erhardt S (2018) In vivo analysis of centromeric proteins reveals a stem cell-specific asymmetry and an essential role in differentiated, non- proliferating cells. Cell Rep 22:1982–1993. https://doi.org/10.1016/j.celrep.2018.01.079

    Article  CAS  Google Scholar 

  188. Svensson JP, Shukla M, Menendez-Benito V, Norman-Axelsson U, Audergon P, Sinha I, Tanny JC, Allshire RC, Ekwall K (2015) A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res 25:872–883. https://doi.org/10.1101/gr.188870.114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray-Gallet, D., Almouzni, G. (2021). The Histone H3 Family and Its Deposition Pathways. In: Fang, D., Han, J. (eds) Histone Mutations and Cancer. Advances in Experimental Medicine and Biology, vol 1283. Springer, Singapore. https://doi.org/10.1007/978-981-15-8104-5_2

Download citation

Publish with us

Policies and ethics