Skip to main content

Design of a Nonlinear Energy Harvesting Dynamic Vibration Absorber

  • Conference paper
  • First Online:
Recent Advances in Computational Mechanics and Simulations

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 813 Accesses

Abstract

The study focuses on the design of an energy harvesting nonlinear dynamic vibration absorber (DVA) for possible vibration attenuation and energy generation. As an application vibration mitigation of a base-excited single degree of freedom (SDOF) system is considered. Conventional DVAs are widely used as vibration control devices that undergo large displacements in order to dissipate the energy from the primary structure. For an energy harvester higher the vibration higher is the energy generated. Therefore, if an energy harvester is attached to the DVA, the primary structure DVA interaction can be used for dual purposes. In this study, a duffing-type nonlinear DVA system with a piezo patch is proposed as energy harvesting nonlinear DVA to mitigate the vibration and to obtain electricity. The modeling of the total system is carried out considering the electromechanical interactions between the harvester-DVA and structural system. The formulation is done in time domain and a simulation study is carried out for harmonic base excitation to understand the effect of nonlinearity in voltage generation. A frequency sweep study is carried out to locate the frequency band in which the system responses are consistently higher. Further, the important design parameters are identified. A parametric study to obtain optimal design parameters is also reported. The advantages of nonlinear energy harvesting DVA over the linear ones are many. A nonlinear harvester provides power over a broad range of frequencies and, therefore would be able to dissipate energy from the primary structure over wideband excitations. Finally, the performance of the designed nonlinear DVA system with harvester is examined for vibration mitigation of SDOF primary system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural control: past, present, and future. J. Eng. Mech. 123, 897–971 (1997)

    Article  Google Scholar 

  2. Chongfeng, W., Xingjian, J.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 118 (2017)

    Google Scholar 

  3. Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators, A 52, 8–11 (1996)

    Article  Google Scholar 

  4. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Article  Google Scholar 

  5. Jones, P.G., Tudor, M.J., Beeby, S.P., White, N.M.: An electromagnetic, vibration powered generator for intelligent sensor system. Sens. Actuators, A 110, 244–349 (2004)

    Google Scholar 

  6. Mitcheson, P., Milao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro power generator for low frequency operation. Sens. Actuators, A 115, 523–529 (2004)

    Article  Google Scholar 

  7. Sodano, H.A., Park, G., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  8. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, UK (2011)

    Book  Google Scholar 

  9. Ali, S.F., Friswell, M.I., Adhikari, S.: Piezoelectric energy harvesting with parametric uncertainty. Smart Mater. Struct. 19(10), 105010 (2010)

    Article  Google Scholar 

  10. Adhikari, S., Friswell, M.I., Inman, D.J.: Piezoelectric energy harvesting from broadband random vibrations. Smart Mater. Struct. 18(11), 115005 (2009)

    Google Scholar 

  11. Daqaq, M.: Response of a uni-modal Duffing type harvesters to random force excitations. J. Sound Vib. 329, 3621–3631 (2010)

    Article  Google Scholar 

  12. Friswell, M.I., Ali, S.F., Adhikari, S., Lees, A.W., Bilgen, O., Litak, G.: Nonlinear piezoelectric vibration energy harvesting from an inverted cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(3), 1505–1521 (2012)

    Article  Google Scholar 

  13. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Piezoelectric multi-frequency energy converter for power harvesting in autonomous micro-systems. Sens. Actuators, A 142, 329–335 (2008)

    Article  Google Scholar 

  14. Malaji, P., Ali, S.F.: Magneto-mechanically coupled electromagnetic harvesters for broadband energy harvesting. Appl. Phys. Lett. 111, 083901 (2017)

    Article  Google Scholar 

  15. Ali, S.F., Adhikari, S., Friswell, M.I., Narayanan, S.: The analysis of piezomagnetoelastic energy harvesters under broadband random excitations. J. Appl. Phys. 109(7), 074904 (2011)

    Article  Google Scholar 

  16. Li, L., Cui, P.: Novel design approach of a nonlinear tuned mass damper with duffing stiffness. J. Eng. Mech. 143(4), (2017)

    Google Scholar 

  17. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130, (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumi Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharyya, S., Ali, S.F. (2021). Design of a Nonlinear Energy Harvesting Dynamic Vibration Absorber. In: Saha, S.K., Mukherjee, M. (eds) Recent Advances in Computational Mechanics and Simulations. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8315-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8315-5_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8314-8

  • Online ISBN: 978-981-15-8315-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics