Skip to main content

U-RME: Underwater Refined Motion Estimation in Hazy, Cluttered and Dynamic Environments

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2019)

Abstract

Optical Flow is a popular method of computer vision for motion estimation. In this paper, we present a refined optical flow estimation method. Central to our approach is exploiting contour information as most of the motion lies on the edges. Further, we have formulated it as sparse to dense motion estimation. Proposed method has been evaluated on challenging real life image sequences of KITTI and Fish4Knowledge database. Results demonstrate that method performs well in case of low contrast, highly cluttered background, dynamic background, occlusion and illumination change.

We would like to thank the Ministry of Electronics and Information Technology Government of India and the Media Lab Asia for financial assistance to carry out research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2(3), 283–310 (1989)

    Article  Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2010)

    Article  Google Scholar 

  4. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. In: Readings in Computer Vision, pp. 184–203. Elsevier (1987)

    Google Scholar 

  6. Cho, Y., Kim, A.: Visibility enhancement for underwater visual slam based on underwater light scattering model. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 710–717. IEEE (2017)

    Google Scholar 

  7. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013)

    Google Scholar 

  8. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multisc. Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  9. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  10. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  11. Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)

    Article  Google Scholar 

  12. Kavasidis, I., Palazzo, S., Di Salvo, R., Giordano, D., Spampinato, C.: A semi-automatic tool for detection and tracking ground truth generation in videos. In: Proceedings of the 1st International Workshop on Visual Interfaces for Ground Truth Collection in Computer Vision Applications, p. 6. ACM (2012)

    Google Scholar 

  13. Li, Y., Osher, S.: A new median formula with applications to PDE based denoising. Commun. Math. Sci. 7(3), 741–753 (2009)

    Article  MathSciNet  Google Scholar 

  14. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2010)

    Article  Google Scholar 

  15. Liu, P., King, I., Lyu, M.R., Xu, J.: DDFlow: learning optical flow with unlabeled data distillation. arXiv preprint arXiv:1902.09145 (2019)

  16. Lucas, B.D., Kanade, T., et al.: An Iterative Image Registration Technique With an Application to Stereo Vision (1981)

    Google Scholar 

  17. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  18. Otte, M., Nagel, H.-H.: Optical flow estimation: advances and comparisons. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 49–60. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57956-7_5

    Chapter  Google Scholar 

  19. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)

    Google Scholar 

  20. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  21. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1164–1172 (2015)

    Google Scholar 

  22. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deepmatching: hierarchical deformable dense matching. Int. J. Comput. Vis. 120(3), 300–323 (2016)

    Article  MathSciNet  Google Scholar 

  23. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439. IEEE, June 2010

    Google Scholar 

  24. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  25. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer, New York (2013). https://doi.org/10.1007/978-0-387-21736-9

    Book  MATH  Google Scholar 

  26. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  27. Young, D.M.: Iterative Solution of Large Linear Systems. Elsevier (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, S., Mukherjee, P., Chaudhury, S., Lall, B. (2020). U-RME: Underwater Refined Motion Estimation in Hazy, Cluttered and Dynamic Environments. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2019. Communications in Computer and Information Science, vol 1249. Springer, Singapore. https://doi.org/10.1007/978-981-15-8697-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8697-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8696-5

  • Online ISBN: 978-981-15-8697-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics