Skip to main content

The Use of Human Pluripotent Stem Cells (hPSCs) and CRISPR-Mediated Gene Editing in Retinal Diseases

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 458 Accesses

Abstract

The human retina is one of the most complex tissues of the body, composed of various specialized cells organized in a fashion that enables the reception, conversion, preliminary-processing and final transmission of light signals to the brain. Dysfunction of any of the retinal cell types essential for normal vision ultimately leads to vision decline and potentially blindness. Diseases affecting the retina and optic nerve can broadly be divided into two forms, either complex or monogenic diseases. Complex, multifactorial diseases include age-related macular degeneration and glaucoma. Rarer heritable retinopathies and optic neuropathies, often affecting the young, include Stargardt Disease, Usher Syndrome, Leber’s Hereditary Optic Neuropathy, Best Disease, Choroideremia and Retinitis Pigmentosa. To understand the genetic and pathological features of retinal diseases, it is imperative that appropriate models and technologies are implemented to enhance the prospects of therapies for patients. For the purpose of this chapter, we will focus on the current technologies used for generating retinal disease models in vitro, and how gene-editing technologies such as CRISPR/Cas are propelling ophthalmic research into the spotlight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levkovitch-Verbin H. Animal models of optic nerve diseases. Eye. 2004;18(11):1066–74.

    Article  CAS  PubMed  Google Scholar 

  2. Waterston RH, Lander ES, Sulston JE. On the sequencing of the human genome. Proc Natl Acad Sci U S A. 2002;99(6):3712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernandez-Godino R, Garland DL, Pierce EA. Isolation, culture and characterization of primary mouse RPE cells. Nat Protocols. 2016;11(7):1206–18.

    Article  CAS  PubMed  Google Scholar 

  4. Irfan Maqsood M, Matin MM, Bahrami AR, Ghasroldasht MM. Immortality of cell lines: challenges and advantages of establishment. Cell Biol Int. 2013;37(10):1038–45.

    Article  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  8. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY). 2007;318(5858):1917–20.

    Article  CAS  Google Scholar 

  9. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010;7(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  11. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108(34):14234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5):381–4.

    Article  CAS  PubMed  Google Scholar 

  14. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8(6):633–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc. 2011;6(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  22. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  CAS  PubMed  Google Scholar 

  23. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  24. Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol. 2018;10:2515841418774433.

    PubMed  PubMed Central  Google Scholar 

  25. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nguyen M, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development. 2000;127(16):3581–91.

    CAS  PubMed  Google Scholar 

  27. Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer. 2011;12(1):23–38.

    Article  PubMed  CAS  Google Scholar 

  28. Bassett EA, Wallace VA. Cell fate determination in the vertebrate retina. Trends Neurosci. 2012;35(9):565–73.

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron. 1997;19(5):1017–30.

    Article  CAS  PubMed  Google Scholar 

  30. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, et al. Nrl is required for rod photoreceptor development. Nat Genet. 2001;29(4):447–52.

    Article  CAS  PubMed  Google Scholar 

  31. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci. 2003;6(12):1255–63.

    Article  CAS  PubMed  Google Scholar 

  32. Simó R, Villarroel M, Corraliza L, Hernández C, Garcia-Ramírez M. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier—implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol. 2010;2010:15.

    Article  CAS  Google Scholar 

  33. Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2(5):384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem cells (Dayton, Ohio). 2009;27(10):2427–34.

    Article  CAS  Google Scholar 

  35. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, Rajala K, Onnela N, Narkilahti S, et al. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis. 2011;17:558–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, et al. A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev. 2012;21(12):2262–72.

    Article  CAS  PubMed  Google Scholar 

  37. Surmacz B, Fox H, Gutteridge A, Fish P, Lubitz S, Whiting P. Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules. Stem cells (Dayton, Ohio). 2012;30(9):1875–84.

    Article  CAS  Google Scholar 

  38. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408.

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Liu Y, Oltean A, Beebe DC. Bmp4 from the optic vesicle specifies murine retina formation. Dev Biol. 2015;402(1):119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Osakada F, Jin Z-B, Hirami Y, Ikeda H, Danjyo T, Watanabe K, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(17):3169–79.

    Article  CAS  PubMed  Google Scholar 

  42. Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci. 2014;111(23):8518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.

    Article  CAS  PubMed  Google Scholar 

  44. Lidgerwood GE, Lim SY, Crombie DE, Ali R, Gill KP, Hernandez D, et al. Defined medium conditions for the induction and expansion of human pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Rev. 2016;12(2):179–88.

    Article  CAS  Google Scholar 

  45. Zhu Y, Carido M, Meinhardt A, Kurth T, Karl MO, Ader M, et al. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One. 2013;8(1):e54552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.

    Article  CAS  PubMed  Google Scholar 

  47. Cho MS, Kim SJ, Ku S-Y, Park JH, Lee H, Yoo DH, et al. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses. Stem Cell Res. 2012;9(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A. 2002;99(3):1580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hirano M, Yamamoto A, Yoshimura N, Tokunaga T, Motohashi T, Ishizaki K, et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2003;228(4):664–71.

    Article  Google Scholar 

  50. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A. 2005;102(32):11331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288–96.

    Article  CAS  PubMed  Google Scholar 

  52. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008;26(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  53. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458(3):126–31.

    Article  CAS  PubMed  Google Scholar 

  54. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci. 2006;103(34):12769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou S, Flamier A, Abdouh M, Tétreault N, Barabino A, Wadhwa S, et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development. 2015;142(19):3294.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells (Dayton, Ohio). 2011;29(8):1206–18.

    Article  CAS  Google Scholar 

  57. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

    Article  CAS  PubMed  Google Scholar 

  59. Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):8518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka T, Yokoi T, Tamalu F, Watanabe S-I, Nishina S, Azuma N. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015;5:8344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, et al. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells (Dayton, Ohio). 2016;34(6):1553–62.

    Article  CAS  Google Scholar 

  62. Wahlin KJ, Maruotti JA, Sripathi SR, Ball J, Angueyra JM, Kim C, et al. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep. 2017;7(1):766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mellough CB, Collin J, Khazim M, White K, Sernagor E, Steel DH, et al. IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells (Dayton, Ohio). 2015;33(8):2416–30.

    Article  CAS  Google Scholar 

  64. Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep. 2017;9(3):820–37.

    Article  Google Scholar 

  65. DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, et al. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in Rotating-Wall vessel bioreactors. Stem Cell Rep. 2018;10(1):300–13.

    Article  CAS  Google Scholar 

  66. Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, et al. Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem Cells Transl Med. 2018;7(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu J, Cifuentes H, Reynolds J, Lamba DA. Immunosuppression via Loss of IL2r gamma enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell. 2017;20(3):384.e5–374.

    Article  CAS  Google Scholar 

  68. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in <em>Crx</em>−deficient mice. Cell Stem Cell. 2009;4(1):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY). 2013;339(6121):819–23.

    Article  CAS  Google Scholar 

  70. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. elife. 2013;2:e00471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science (New York, NY). 2013;339(6121):823–6.

    Article  CAS  Google Scholar 

  72. Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2014;5(2):a017111.

    Article  PubMed  CAS  Google Scholar 

  73. Bennett J. Taking stock of retinal gene therapy: looking Back and moving forward. Molecular Therapy: The journal of the American Society of Gene Therapy. 2017;25(5):1076–94.

    Article  CAS  Google Scholar 

  74. Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome: Official Journal of the International Mammalian Genome Society. 2017;28(7–8):348–64.

    Article  CAS  Google Scholar 

  75. Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000;25(4):462–6.

    Article  CAS  PubMed  Google Scholar 

  76. Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A, et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet. 1996;13(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  77. Sun X, Park JH, Gumerson J, Wu Z, Swaroop A, Qian H, et al. Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. Proc Natl Acad Sci U S A. 2016;113(21):E2925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hong DH, Pawlyk BS, Shang J, Sandberg MA, Berson EL, Li T. A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci U S A. 2000;97(7):3649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brunner S, Skosyrski S, Kirschner-Schwabe R, Knobeloch KP, Neidhardt J, Feil S, et al. Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Invest Ophthalmol Vis Sci. 2010;51(2):1106–15.

    Article  PubMed  Google Scholar 

  80. Zhang Q, Acland GM, Wu WX, Johnson JL, Pearce-Kelling S, Tulloch B, et al. Different RPGR exon ORF15 mutations in canids provide insights into photoreceptor cell degeneration. Hum Mol Genet. 2002;11(9):993–1003.

    Article  CAS  PubMed  Google Scholar 

  81. Deng WL, Gao ML, Lei XL, Lv JN, Zhao H, He KW, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis Pigmentosa patients. Stem Cell Rep. 2018;10(6):2005.

    Article  CAS  Google Scholar 

  82. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision medicine: genetic repair of retinitis Pigmentosa in patient-derived stem cells. Sci Rep. 2016;6:19969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lustremant C, Habeler W, Plancheron A, Goureau O, Grenot L, de la Grange P, et al. Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis. Cell Reprogram. 2013;15(3):233–46.

    Article  CAS  PubMed  Google Scholar 

  84. Drivas TG, Holzbaur EL, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest. 2013;123(10):4525–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parfitt DA, Lane A, Ramsden CM, Carr AJ, Munro PM, Jovanovic K, et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell. 2016;18(6):769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burnight ER, Gupta M, Wiley LA, Anfinson KR, Tran A, Triboulet R, et al. Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration. Mol Ther: The journal of the American Society of Gene Therapy. 2017;25(9):1999–2013.

    Article  CAS  Google Scholar 

  87. Foltz LP, Howden SE, Thomson JA, Clegg DO. Functional assessment of patient-derived retinal pigment epithelial cells edited by CRISPR/Cas9. Int J Mol Sci. 2018;19(12):4127.

    Article  PubMed Central  Google Scholar 

  88. Zhang X, Zhang D, Chen SC, Lamey T, Thompson JA, McLaren T, et al. Generation of an induced pluripotent stem cell line from a patient with non-syndromic CLN3-associated retinal degeneration and a coisogenic control line. Stem Cell Res. 2018;29:245–9.

    Article  CAS  PubMed  Google Scholar 

  89. Galloway CA, Dalvi S, Hung SSC, MacDonald LA, Latchney LR, Wong RCB, et al. Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A. 2017;114(39):E8214–e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mathur P, Yang J. Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852(3):406–20.

    Article  CAS  Google Scholar 

  91. Fuster-Garcia C, Garcia-Garcia G, Gonzalez-Romero E, Jaijo T, Sequedo MD, Ayuso C, et al. USH2A gene editing using the CRISPR system. Mol Ther Nucleic Acids. 2017;8:529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Avior Y, Lezmi E, Yanuka D, Benvenisty N. Modeling developmental and tumorigenic aspects of trilateral retinoblastoma via human embryonic stem cells. Stem cell Rep. 2017;8(5):1354–65.

    Article  CAS  Google Scholar 

  94. Wong RCB, Lim SY, Hung SSC, Jackson S, Khan S, Van Bergen NJ, et al. Mitochondrial replacement in an iPSC model of Leber’s hereditary optic neuropathy. Aging. 2017;9(4):1341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sluch VM, Davis CH, Ranganathan V, Kerr JM, Krick K, Martin R, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015;5:16595.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Homma K, Usui S, Kaneda M. Knock-in strategy at 3′-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation. Genes Cells: Devoted to Molecular & Cellular Mechanisms. 2017;22(3):250–64.

    Article  CAS  Google Scholar 

  97. Hafler BP. Clinical progress in inherited retinal degenerations: gene therapy clinical trials and advances in genetic sequencing. Retina (Philadelphia, Pa). 2017;37(3):417–23.

    Article  CAS  Google Scholar 

  98. Sanjurjo-Soriano C, Kalatzis V. Guiding lights in genome editing for inherited retinal disorders: implications for gene and Cell therapy. Neural Plast. 2018;2018:5056279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Fischer MD, McClements ME, Martinez-Fernandez de la Camara C, Bellingrath JS, Dauletbekov D, Ramsden SC, et al. Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis Pigmentosa. Mol Ther: The journal of the American Society of Gene Therapy. 2017;25(8):1854–65.

    Article  CAS  Google Scholar 

  100. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare no potential conflicts of interest. This work was supported by grants from the Macular Disease Foundation of Australia, the Jack Brockhoff Foundation, the Yulgilbar Alzheimer’s Research Program, the DHB Foundation. Further support was provided by an NHMRC Practitioner Fellowship (AWH), an NHMRC Senior Research Fellowship (1154389, AP), the University of Melbourne and Operational Infrastructure Support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Pébay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lidgerwood, G.E., Hewitt, A.W., Pébay, A., Hernández, D. (2021). The Use of Human Pluripotent Stem Cells (hPSCs) and CRISPR-Mediated Gene Editing in Retinal Diseases. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics