Skip to main content

Historical Developments and Future Perspectives in Nuclear Resonance Scattering

  • Chapter
  • First Online:
Modern Mössbauer Spectroscopy

Part of the book series: Topics in Applied Physics ((TAP,volume 137))

Abstract

In few decades, Nuclear Resonance Scattering of synchrotron radiation developed from a dream to an advanced suite of powerful methods, gathering a wide range of applications from general relativity to nanoscience, combining unprecedented properties of nuclear resonance and synchrotron light, and expanding studies to multiply extreme conditions. This article reviews fundamentals of nuclear resonance physics and properties of synchrotron radiation, provides a short historical overview of the fascinating development, major techniques and instrumentation of the method, and gives a brief snapshot of modern applications and yet coming opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    we use the term \(\gamma \)-ray for x-rays coming from a nucleus.

  2. 2.

    Unified atomic mass unit \(\text {u} \,\hat{=}\, 931.494\,\text {MeV}/c^2\).

  3. 3.

    All ‘\(\sigma \)’ values in this paragraph are ‘root mean square’ (rms) values assuming Gaussian distributions. They have to be multiplied by \(2\sqrt{2 \ln {2}} \approx 2.355\) in order to get the corresponding ‘full width at half maximum’ values.

References

  1. R.L. Mössbauer, Zeitschrift für Physik 151(2), 124 (1958). https://doi.org/10.1007/BF01344210

  2. R.L. Mössbauer, Naturwissenschaften 45(22), 538 (1958). https://doi.org/10.1007/BF00632050

  3. P.J. Black, P.B. Moon, Nature 188, 481 (1960)

    Article  ADS  Google Scholar 

  4. S. Bernstein, E.C. Campbell, Phys. Rev. 132, 1625 (1963). https://doi.org/10.1103/PhysRev.132.1625

  5. P.J. Black, G. Longworth, D.A. O’Connor, Proc. Phys. Soc. 83(6), 937 (1964). http://stacks.iop.org/0370-1328/83/i=6/a=305

  6. G.V. Smirnov, Hyperfine Interactions 27, 203 (1986)

    Article  ADS  Google Scholar 

  7. U. van Bürck, Hyperfine Interactions 27, 219 (1986)

    Article  ADS  Google Scholar 

  8. E. Gerdau, R. Rüffer, H. Winkler, W. Tolkdorf, C.P. Klages, J.P. Hannon, Phys. Rev. Lett. 54, 835 (1985)

    Article  ADS  Google Scholar 

  9. J.P. Hannon, G.T. Trammell, Hyperfine Interactions 123–124(1–4), 127 (1999). https://doi.org/10.1023/A:1017011621007

  10. P. Gütlich, E. Bill, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, 2011)

    Google Scholar 

  11. Yu.V. Shvyd’ko, M. Lerche, J. Jäschke, M. Lucht, E. Gerdau, M. Gerken, H.D. Rüter, H.-C. Wille, P. Becker, E.E. Alp, W. Sturhahn, J. Sutter, T.S. Toellner, Phys. Rev. Lett. 85, 495 (2000). https://doi.org/10.1103/PhysRevLett.85.495

  12. E. Gluskin, E.E. Alp, I. McNulty, W. Sturhahn, J. Sutter, J. Synchrotron Rad. 6, 1065 (1999)

    Article  Google Scholar 

  13. M. Yabashi, K. Tamasaku, T. Ishikawa, Phys. Rev. Lett. 88, 244801 (2002). https://doi.org/10.1103/PhysRevLett.88.244801

  14. Yu.V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H.D. Rüter, E.E. Alp, R. Khachatryan, Phys. Rev. Lett. 90, 013904 (2003). https://doi.org/10.1103/PhysRevLett.90.013904

  15. R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, R. Rüffer, Science 328(5983), 1248 (2010). https://doi.org/10.1126/science.1187770. http://www.sciencemag.org/content/328/5983/1248.abstract

  16. E. Gerdau, H. de Waard (eds.), Nuclear Resonant Scattering of Synchrotron Radiation (Baltzer Science Publishers, 1999/2000)

    Google Scholar 

  17. J.P. Hannon, G.T. Trammell, Phys. Rev. 169, 315 (1968). https://doi.org/10.1103/PhysRev.169.315

  18. J.P. Hannon, G.T. Trammell, Phys. Rev. 186, 306 (1969). https://doi.org/10.1103/PhysRev.186.306

  19. A.M. Afanas’ev, Yu. Kagan, JETP 21, 215 (1965)

    ADS  Google Scholar 

  20. A.M. Afanas’ev, Yu. Kagan, JETP 37, 987 (1973)

    ADS  Google Scholar 

  21. Yu. Shvyd’ko, X-Ray Optics—High-Energy-Resolution Applications, Optical Science, vol. 98 (Springer Publishers, 2004)

    Google Scholar 

  22. R. Röhlsberger, Nuclear condensed matter physics with synchrotron radiation, in Springer Tracts in Modern Physics, vol. 208 (Springer Publishers, 2004)

    Google Scholar 

  23. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  24. H. Wiedemann, Particle Accelerator Physics I + II (Springer, Berlin, 1993)

    Book  Google Scholar 

  25. T. Tanaka, H. Kitamura, J. Sync. Radiation 16, 380 (2009). https://doi.org/10.1107/S0909049509009479

    Article  Google Scholar 

  26. S.L. Ruby, J. Phys. 35(C6), 209 (1974)

    Google Scholar 

  27. R.L. Mössbauer, Naturwissenschaften 60, 493 (1973)

    Article  ADS  Google Scholar 

  28. R.L. Cohen, P.A. Flinn, E. Gerdau, J.P. Hannon, S.L. Ruby, G.T. Trammell, Workshop on new directions in Mössbauer spectroscopy, in AIP Conference Proceedings, vol. 38, ed. by G. Perlow (AIP, New York, 1977), pp. 140–148. https://doi.org/10.1063/1.31071

  29. E. Gerdau, M. Mueller, H. Winkler, R. Rüffer, European Synchrotron Radiation Facility, in vol. Supplement I—The Scientific Case, ed. by Y. Farge, P. Duke (European Science Foundation (ESF), Strasbourg, 1979), pp. 69–75

    Google Scholar 

  30. R.V. Pound, G.A. Rebka, Phys. Rev. Lett. 4, 274 (1960). https://doi.org/10.1103/PhysRevLett.4.274

  31. E.P. Team (ed.), ESRF Foundation Phase Report (ESRF, Grenoble, 1987)

    Google Scholar 

  32. B. Marx, K.S. Schulze, I. Uschmann, T. Kämpfer, R. Lötzsch, O. Wehrhan, W. Wagner, C. Detlefs, T. Roth, J. Härtwig, E. Förster, T. Stöhlker, G.G. Paulus, Phys. Rev. Lett. 110, 254801 (2013)

    Article  ADS  Google Scholar 

  33. G.T. Trammell, J.P. Hannon, S.L. Ruby, P. Flinn, R.L. Mössbauer, F. Parak, Workshop on new directions in Mössbauer spectroscopy, in AIP Conference Proceedings, vol. 38, ed. by G. Perlow (AIP, New York, 1977), p. 46. https://doi.org/10.1063/1.31071

  34. J.P. Hannon, G.T. Trammell, M. Mueller, E. Gerdau, H. Winkler, R. Rüffer, Phys. Rev. Lett. 43, 636 (1979). https://doi.org/10.1103/PhysRevLett.43.636. URL https://link.aps.org/doi/10.1103/PhysRevLett.43.636

  35. J.P. Hannon, N.V. Hung, G.T. Trammell, E. Gerdau, M. Mueller, R. Rüffer, H. Winkler, Phys. Rev. B 32, 5068 (1985). https://doi.org/10.1103/PhysRevB.32.5068

  36. J.P. Hannon, N.V. Hung, G.T. Trammell, E. Gerdau, M. Mueller, R. Rüffer, H. Winkler, Phys. Rev. B 32, 5081 (1985). https://doi.org/10.1103/PhysRevB.32.5081

  37. J.P. Hannon, G.T. Trammell, M. Mueller, E. Gerdau, R. Rüffer, H. Winkler, Phys. Rev. B 32, 6363 (1985). https://doi.org/10.1103/PhysRevB.32.6363

  38. J.P. Hannon, G.T. Trammell, M. Mueller, E. Gerdau, R. Rüffer, H. Winkler, Phys. Rev. B 32, 6374 (1985). https://doi.org/10.1103/PhysRevB.32.6374

  39. R. Röhlsberger, J. Evers, Quantum Optical phenomena in Nuclear Resonant Scattering, in This book, Chapter 3

    Google Scholar 

  40. G.T. Trammell, Gamma-ray diffraction by resonant nuclei, in Chemical Effects of Nuclear Transformations, vol. I (International Atomic Energy Agency, Vienna, 1961)

    Google Scholar 

  41. Yu. Kagan, A.M. Afanas’ev, I.P. Perstnev, JETP 27, 819 (1968)

    ADS  Google Scholar 

  42. P.J. Black, I.P. Duerdoth, Proc. Phys. Soc. 84, 169 (1964)

    Article  ADS  Google Scholar 

  43. G.V. Smirnov, V.V. Sklyarevskii, R.A. Voskanyan, A.N. Artem’ev, JETP Lett. 9, 70 (1969)

    ADS  Google Scholar 

  44. P.P. Kovalenko, V.G. Labushkin, V.V. Rudenko, V.A. Sarkisyan, V.N. Seleznev, JETP Lett. 26, 85 (1977)

    ADS  Google Scholar 

  45. R.M. Mirzababaev, G.V. Smirnov, V.V. Sklyarevskii, A.N. Artem’ev, A.N. Izrailenko, A.V. Babkov, Phys. Lett. A 37, 441 (1971)

    Article  ADS  Google Scholar 

  46. V.S. Zasimov, R.N. Kuz’min, A.Yu. Aleksandrov, A.I. Firov, JETP Lett. 15, 277 (1972)

    Google Scholar 

  47. A.V. Kolpakov, E.N. Ovchinnikova, R.N. Kuz’min, Phys. Stat. Sol. (b) 93, 511 (1979)

    Google Scholar 

  48. H. Winkler, R. Eisberg, E. Alp, R. Rüffer, E. Gerdau, S. Lauer, A.X. Trautwein, M. Grodzicki, A. Vera, Z. Phys. B 49, 331 (1983)

    Google Scholar 

  49. P.P. Kovalenko, V.G. Labushkin, A.K. Ovsepyan, E.R. Sarkisov, E.V. Smirnov, JETP Lett. 39, 573 (1984)

    ADS  Google Scholar 

  50. E. Gerdau, U. van Bürck, R. Rüffer, Hyperfine Interactions 123/124, 3 (1999)

    Google Scholar 

  51. R. Rüffer, Reine Kernbraggstreuung am Yttrium-Eisen-Granat—Eine Methode zur Monochromatisierung von Synchrotronstrahlung. Ph.D. Thesis, Universität Hamburg, Hamburg (1985)

    Google Scholar 

  52. T. Mitsui, M. Seto, S. Kikuta, N. Hirao, Y. Ohishi, H. Takei, Y. Kobayashi, S. Kitao, S. Higashitaniguchi, R. Masuda, Japan. J. Appl. Phys. 46(2R), 821 (2007). http://stacks.iop.org/1347-4065/46/i=2R/a=821

  53. W. Sturhahn, E. Gerdau, Phys. Rev. B 49, 9285 (1994). https://doi.org/10.1103/PhysRevB.49.9285

  54. G.V. Smirnov, U. van Bürck, A.I. Chumakov, A.Q.R. Baron, R. Rüffer, Phys. Rev. B 55(9), 5811 (1997)

    Article  ADS  Google Scholar 

  55. Q.A. Pankhurst, N.S. Cohen, L.F. Barquín, M.R.J. Gibbs, G.V. Smirnov, J. Non-Cryst. Solids 287(1–3), 81 (2001). https://doi.org/10.1016/S0022-3093(01)00545-2. http://www.sciencedirect.com/science/article/pii/S0022309301005452

  56. T. Mitsui, N. Hirao, Y. Ohishi, R. Masuda, Y. Nakamura, H. Enoki, K. Sakaki, M. Seto, J. Sync. Rad. 16, 723 (2009)

    Article  Google Scholar 

  57. V. Potapkin, A.I. Chumakov, G.V. Smirnov, J.P. Celse, R. Rüffer, C. McCammon, L. Dubrovinsky, J. Sync. Radiation 19(4), 559 (2012). http://dx.doi.org/10.1107/S0909049512015579

  58. G.V. Smirnov, A.I. Chumakov, V.B. Potapkin, R. Rüffer, S.L. Popov, Phys. Rev. A 84, 053851 (2011). https://doi.org/10.1103/PhysRevA.84.053851

  59. M. Seto, R. Masuda, S. Higashitaniguchi, S. Kitao, Y. Kobayashi, C. Inaba, T. Mitsui, Y. Yoda, Phys. Rev. Lett. 102, 217602 (2009). https://doi.org/10.1103/PhysRevLett.102.217602

  60. M. Seto, R. Masuda, M. Saito, Synchrotron-radiation-based energy domain Mössbauer spectroscopy, nuclear resonant inelastic-scattering, and quasi-elastic scattering using Mössbauer gamma rays, in This book, Chapter 2

    Google Scholar 

  61. J.B. Hastings, D.P. Siddons, U. van Bürck, R. Hollatz, U. Bergmann, Phys. Rev. Lett. 66, 770 (1991). https://doi.org/10.1103/PhysRevLett.66.770

  62. U. van Bürck, D.P. Siddons, J.B. Hastings, U. Bergmann, R. Hollatz, Phys. Rev. B 46, 6207 (1992). https://doi.org/10.1103/PhysRevB.46.6207

  63. Yu.V. Shvyd’ko, A.I. Chumakov, A.Q.R. Baron, E. Gerdau, R. Rüffer, A. Bernhard, J. Metge, Phys. Rev. B 54, 14942 (1996). https://doi.org/10.1103/PhysRevB.54.14942

  64. D.L. Nagy, L. Bottyán, B. Croonenborghs, L. Deák, B. Degroote, J. Dekoster, H.J. Lauter, V. Lauter-Pasyuk, O. Leupold, M. Major, J. Meersschaut, O. Nikonov, A. Petrenko, R. Rüffer, H. Spiering, E. Szilágyi, Phys. Rev. Lett. 88, 157202 (2002)

    Article  ADS  Google Scholar 

  65. A.Q.R. Baron, A.I. Chumakov, R. Rüffer, H. Grünsteudel, H.F. Grünsteudel, O. Leupold, Europhys. Lett. 34(5), 331 (1996). https://doi.org/10.1209/epl/i1996-00460-0

    Article  ADS  Google Scholar 

  66. I. Sergueev, U. van Bürck, A.I. Chumakov, T. Asthalter, G.V. Smirnov, H. Franz, R. Rüffer, W. Petry, Phys. Rev. B (Condensed Matter and Materials Physics) 73(2), 024203 (2006). https://doi.org/10.1103/PhysRevB.73.024203. http://link.aps.org/abstract/PRB/v73/e024203

  67. G. Schatz, A. Weidinger, Nuclear Condensed Matter Physics: Nuclear Methods and Applications (Wiley, New York, 1996)

    Google Scholar 

  68. M. Seto, S. Kitao, Y. Kobayashi, R. Haruki, Y. Yoda, T. Mitsui, T. Ishikawa, Phys. Rev. Lett. 91, 185505 (2003). https://doi.org/10.1103/PhysRevLett.91.185505

  69. A.Q.R. Baron, H. Franz, A. Meyer, R. Rüffer, A.I. Chumakov, E. Burkel, W. Petry, Phys. Rev. Lett. 79, 2823 (1997)

    Article  ADS  Google Scholar 

  70. D.C. Champeney, Rep. Prog. Phys. 42, 1017 (1979)

    Article  ADS  Google Scholar 

  71. R. Masuda, T. Mitsui, S. Kitao, S. Higashitaniguchi, Y. Yoda, M. Seto, Japan. J. Appl. Phys. 47(10, Part 1), 8087 (2008). https://doi.org/10.1143/JJAP.47.8087

  72. M. Seto, Y. Yoda, S. Kikuta, X.W. Zhang, M. Ando, Phys. Rev. Lett. 74, 3828 (1995)

    Article  ADS  Google Scholar 

  73. W. Sturhahn, T.S. Toellner, E.E. Alp, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C.W. Kimball, B. Dabrowski, Phys. Rev. Lett. 74, 3832 (1995). https://doi.org/10.1103/PhysRevLett.74.3832

  74. A.I. Chumakov, R. Rüffer, H. Grünsteudel, H.F. Grünsteudel, G. Grübel, J. Metge, O. Leupold, H.A. Goodwin, EPL (Europhys. Lett.) 30(7), 427 (1995). http://stacks.iop.org/0295-5075/30/i=7/a=009

  75. A.I. Chumakov, A.Q.R. Baron, R. Rüffer, H. Grünsteudel, H.F. Grünsteudel, A. Meyer, Phys. Rev. Lett. 76, 4258 (1996). https://doi.org/10.1103/PhysRevLett.76.4258

  76. H. Thieß, M. Kaisermayr, B. Sepiol, M. Sladecek, R. Rüffer, G. Vogl, Phys. Rev. B 64, 104305 (2001)

    Article  ADS  Google Scholar 

  77. R.A. Brand, Private communication

    Google Scholar 

  78. B. Fultz, Private communication

    Google Scholar 

  79. R. Röhlsberger, T.S. Toellner, W. Sturhahn, K.W. Quast, E.E. Alp, A. Bernhard, E. Burkel, O. Leupold, E. Gerdau, Phys. Rev. Lett. 84, 1007 (2000). https://doi.org/10.1103/PhysRevLett.84.1007

  80. T. Roth, O. Leupold, H.C. Wille, R. Rüffer, K.W. Quast, R. Röhlsberger, E. Burkel, Phys. Rev. B 71(14), 140401 (2005). https://doi.org/10.1103/PhysRevB.71.140401

    Article  ADS  Google Scholar 

  81. R. Callens, R. Coussement, C. L’abbé, S. Nasu, K. Vyvey, T. Yamada, Y. Yoda, J. Odeurs, Phys. Rev. B 65, 180404 (2002). https://doi.org/10.1103/PhysRevB.65.180404

  82. D.P. Siddons, J.B. Hastings, U. Bergmann, F. Sette, M. Krisch, Nuclear Instrum. Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 103(3), 371 (1995). https://doi.org/10.1016/0168-583X(95)00654-0. http://www.sciencedirect.com/science/article/pii/0168583X95006540

  83. T.S. Toellner, E.E. Alp, W. Sturhahn, T.M. Mooney, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, Appl. Phys. Lett. 67(14), 1993 (1995). https://doi.org/10.1063/1.114764

  84. C. L’abbé, R. Coussement, J. Odeurs, E.E. Alp, W. Sturhahn, T.S. Toellner, C. Johnson, Phys. Rev. B 61, 4181 (2000). https://doi.org/10.1103/PhysRevB.61.4181

  85. R. Röhlsberger, E. Gerdau, R. Rüffer, W. Sturhahn, T. Toellner, A. Chumakov, E. Alp, Nuclear Instrum. Methods Phys. Res. A 394, 251 (1997)

    Article  ADS  Google Scholar 

  86. H. Grünsteudel, Nuclear resonant scattering of synchrotron radiation on iron containing biomimetic compounds. Ph.D. Thesis, Medizinische Universiät zu Lübeck, Lübeck (1998)

    Google Scholar 

  87. O. Leupold, K. Rupprecht, G. Wortmann, Struct. Chem. 14, 97 (2003)

    Article  Google Scholar 

  88. S. Dattagupta, Phys. Rev. B 14, 1329 (1976)

    Article  ADS  Google Scholar 

  89. L. Van Hove, Phys. Rev. 95, 249 (1954). https://doi.org/10.1103/PhysRev.95.249

  90. K.S. Singwi, A. Sjölander, Phys. Rev. 120, 1093 (1960)

    Article  ADS  Google Scholar 

  91. V.G. Kohn, A.I. Chumakov, R. Rüffer, Phys. Rev. B 58, 8437 (1998)

    Article  ADS  Google Scholar 

  92. W. Sturhahn, V.G. Kohn, Hyperfine Interactions 123/124, 367 (1999)

    Google Scholar 

  93. H.J. Lipkin, Hyperfine Interactions 123/124, 349 (1999)

    Google Scholar 

  94. H.J. Lipkin, Phys. Rev. B 52(14), 10073 (1995)

    Article  ADS  Google Scholar 

  95. A.I. Chumakov, G. Monaco, A. Fontana, A. Bosak, R.P. Hermann, D. Bessas, B. Wehinger, W.A. Crichton, M. Krisch, R. Rüffer, G. Baldi, G. Carini Jr., G. Carini, G. D’Angelo, E. Gilioli, G. Tripodo, M. Zanatta, B. Winkler, V. Milman, K. Refson, M.T. Dove, N. Dubrovinskaia, L. Dubrovinsky, R. Keding, Y.Z. Yue, Phys. Rev. Lett. 112, 025502 (2014). https://doi.org/10.1103/PhysRevLett.112.025502

  96. T. Ishikawa, Y. Yoda, K. Izumi, C.K. Suzuki, X.W. Zhang, M. Ando, S. Kikuta, Rev. Sci. Instrum. 63, 1015 (1992)

    Article  ADS  Google Scholar 

  97. M. Yabashi, K. Tamasaku, S. Kikuta, T. Ishikawa, Rev. Sci. Instrum. 72(11), 4080 (2001). https://doi.org/10.1063/1.1406925. http://scitation.aip.org/content/aip/journal/rsi/72/11/10.1063/1.1406925

  98. E. Burkel, J. Peisl, B. Dorner, EPL (Europhys. Lett.) 3(8), 957 (1987). http://stacks.iop.org/0295-5075/3/i=8/a=015

  99. I. Sergueev, H.C. Wille, R.P. Hermann, D. Bessas, Yu.V. Shvyd’ko, M. Zaja̧c, R. Rüffer, J. Sync. Radiation 18(5), 802 (2011). https://doi.org/10.1107/S090904951102485X

  100. A.I. Chumakov, M.V. Zelepukhin, G.V. Smirnov, U. van Bürck, R. Rüffer, R. Hollatz, H.D. Rüter, E. Gerdau, Phys. Rev. B 41, 9545 (1990). https://doi.org/10.1103/PhysRevB.41.9545

  101. T. Mitsui, M. Seto, R. Masuda, Japan. J. Appl. Phys. 46(10L), L930 (2007). http://stacks.iop.org/1347-4065/46/i=10L/a=L930

  102. T. Mitsui, M. Seto, R. Masuda, K. Kiriyama, Y. Kobayashi, Japan. J. Appl. Phys. 46(7L), L703 (2007). http://stacks.iop.org/1347-4065/46/i=7L/a=L703

  103. T. Mitsui, Y. Imai, R. Masuda, M. Seto, K. Mibu, J. Sync. Radiation 22(2), 427 (2015). https://doi.org/10.1107/S1600577514028306

    Article  Google Scholar 

  104. M. Krisch, A. Freund, G. Marot, L. Zhang, Nuclear Instrum. Methods Phys. Res. Sect. A Accelerators. Detect. Assoc. Equip. 305(1), 208 (1991). https://doi.org/10.1016/0168-9002(91)90536-Y. http://www.sciencedirect.com/science/article/pii/016890029190536Y

  105. R. Barrett, R. Baker, P. Cloetens, Y. Dabin, C. Morawe, H. Suhonen, R. Tucoulou, A. Vivo, L. Zhang, Proc. SPIE 8139, 813904 (2011). https://doi.org/10.1117/12.894735

  106. A. Snigirev, V.G. Kohn, I. Snigireva, B. Lengeler, Nature 384, 49 (1996)

    Article  ADS  Google Scholar 

  107. T.M. Mooney, E.E. Alp, W.B. Yun, J. Appl. Phys. 71(11), 5709 (1992). https://doi.org/10.1063/1.350506

  108. O. Hignette, G. Rostaing, P. Cloetens, A. Rommeveaux, W. Ludwig, A.K. Freund, Proc. SPIE 4499, (2001). https://doi.org/10.1117/12.450227

  109. S. Kishimoto, Nuclear Instrum. Methods Phys. Res. A 309, 603 (1991)

    Google Scholar 

  110. A.Q.R. Baron, Hyperfine Interactions 125, 29 (2000)

    Article  Google Scholar 

  111. A.I. Chumakov, A.Q.R. Baron, I. Sergueev, C. Strohm, O. Leupold, Yu. Shvyd’ko, G.V. Smirnov, R. Rüffer, Y. Inubushi, M. Yabashi, K. Tono, T. Kudo, T. Ishikawa, Nature Phys. 14, 261 (2018). https://doi.org/10.1038/s41567-017-0001-z

    Article  ADS  Google Scholar 

  112. Multiscalers (2019). https://www.fastcomtec.com/products/ufm/

  113. S. Kishimoto, T. Mitsui, R. Haruki, Y. Yoda, T. Taniguchi, S. Shimazaki, M. Ikeno, M. Saito, M. Tanaka, Rev. Sci. Instrum. 85(11), 113102 (2014). https://doi.org/10.1063/1.4900862

  114. P. Fajardo, A.Q.R. Baron, H. Dautet, M. Davies, P. Fischer, P. Göttlicher, H. Graafsma, C. Hervé, R. Rüffer, C. Thil, J. Phys. Conf. Ser. 425(6), 062005 (2013). http://stacks.iop.org/1742-6596/425/i=6/a=062005

  115. S. Stankov, R. Rüffer, M. Sladecek, M. Rennhofer, B. Sepiol, G. Vogl, N. Spiridis, T. \(\acute{\rm {S}}\)lȩzak, J. Korecki, Rev. Sci. Instrum. 79(4), 045108 (2008). https://doi.org/10.1063/1.2906321. http://link.aip.org/link/?RSI/79/045108/1

  116. I. Kupenko, L. Dubrovinsky, N. Dubrovinskaia, C. McCammon, K. Glazyrin, E. Bykova, T.B. Ballaran, R. Sinmyo, A.I. Chumakov, V. Potapkin, A. Kantor, R. Rüffer, M. Hanfland, W. Crichton, M. Merlini, Rev. Sci. Instrum. 83(12), 124501 (2012). https://doi.org/10.1063/1.4772458

    Article  ADS  Google Scholar 

  117. C. Strohm, P. Van der Linden, R. Rüffer, Phys. Rev. Lett. 104, 087601 (2010). https://doi.org/10.1103/PhysRevLett.104.087601

  118. K. Muffler, J.A. Wolny, H.P. Hersleth, K.K. Andersson, K. Achterhold, R. Rüffer, V. Schünemann, J. Phys. Conf. Ser. 217(1), 012004 (2010). http://stacks.iop.org/1742-6596/217/i=1/a=012004

  119. ESRF Upgrade Programme Phase II (2015-2019)—White Paper; ESRF Upgrade Programme Phase II (2015–2022)—Technical Design Study (2013, 2014). www.esrf.eu

  120. I. Sergueev, L. Dubrovinsky, M. Ekholm, O.Y. Vekilova, A.I. Chumakov, M. Zaja̧c, V. Potapkin, I. Kantor, S. Bornemann, H. Ebert, S.I. Simak, I.A. Abrikosov, R. Rüffer, Phys. Rev. Lett. 111, 157601 (2013). https://doi.org/10.1103/PhysRevLett.111.157601

  121. L. Dubrovinsky, N. Dubrovinskaia, V.B. Prakapenka, A.M. Abakumov, Nature Commun. 3, 1163 (2012)

    Article  ADS  Google Scholar 

  122. L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L.V. Pourovskii, M.I. Katsnelson, J.M. Wills, I.A. Abrikosov, Nature 525, 226 (2015)

    Article  ADS  Google Scholar 

  123. R. Röhlsberger, H. Thomas, K. Schlage, E. Burkel, O. Leupold, R. Rüffer, Phys. Rev. Lett. 89, 237201 (2002)

    Article  ADS  Google Scholar 

  124. T.P. Almeida, R. Temple, J. Massey, K. Fallon, D. McGrouther, T. Moore, C.H. Marrows, S. McVitie, Sci. Rep. 7, 17835 (2017)

    Article  ADS  Google Scholar 

  125. W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933). https://doi.org/10.1007/BF01504252

    Article  ADS  Google Scholar 

  126. I. Troyan, A. Gavriliuk, R. Rüffer, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A.P. Drozdov, M.I. Eremets, Science 351, 1260 (2016)

    Article  Google Scholar 

  127. E. Altshuler, T.H. Johansen, Rev. Modern Phys. 76, 471 (2004)

    Article  ADS  Google Scholar 

  128. R. Blukis, R. Rüffer, A.I. Chumakov, R.J. Harrison, Meteoritics Planet. Sci. 52, 925 (2017)

    Article  ADS  Google Scholar 

  129. J.F.J. Bryson, C.I.O. Nichols, J. Herrero-Albillos, F. Kronast, T. Kasama, H. Alimadad, G. van der Laan, F. Nimmo, R.J. Harrison, Nature 472, 517 (2015)

    Google Scholar 

  130. F. Nestola, V. Cerantola, S. Milani, C. Anzolini, C. McCammon, D. Novella, I. Kupenko, A. Chumakov, R. Rüffer, J.W. Harris, Lithos 265, 328 (2016)

    Article  ADS  Google Scholar 

  131. Yu. Shvyd’ko, Phys. Rev. A 91, 053817 (2015)

    Google Scholar 

  132. R. Sinmyo, K. Glazyrin, C. McCammon, I. Kupenko, A. Kantor, V. Potapkin, A.I. Chumakov, R. Rüffer, L. Dubrovinsky, Phys. Earth Planet. Interiors 229, 16 (2014). https://doi.org/10.1016/j.pepi.2013.12.002. http://www.sciencedirect.com/science/article/pii/S0031920113001921

  133. L. Berthier, Physics 4, 42 (2011)

    Google Scholar 

  134. H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nature Mater. 9, 324 (2010)

    Article  ADS  Google Scholar 

  135. U. van Bürck, R.L. Mössbauer, E. Gerdau, R. Rüffer, R. Hollatz, G.V. Smirnov, J.P. Hannon, Phys. Rev. Lett. 59, 355 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The development of the techniques as well as the waste amount of applications in various scientific fields—only a glimpse could be presented in this article—was only possible with the great involvement of all our colleagues over the years at the beamline and with the users coming to the beamline with incredible ideas for new challenging science. We would as well acknowledge the fruitful collaboration and friendship of our colleagues from the other Nuclear Resonance beamlines at APS, PETRA III, and SPring-8. However, nothing would have started without our mentors, when we were students, E. Gerdau and G. V. Smirnov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Rüffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rüffer, R., Chumakov, A.I. (2021). Historical Developments and Future Perspectives in Nuclear Resonance Scattering. In: Yoshida, Y., Langouche, G. (eds) Modern Mössbauer Spectroscopy. Topics in Applied Physics, vol 137. Springer, Singapore. https://doi.org/10.1007/978-981-15-9422-9_1

Download citation

Publish with us

Policies and ethics