Skip to main content

Opportunities, Challenges, and Ecological Footprint of Sustaining Small Ruminant Production in the Changing Climate Scenario

  • Chapter
  • First Online:

Abstract

The livestock sector has evolved enormously over time. The livestock sector not only supports a vast proportion of individuals across the globe; it also ensures food security. Erratically varying climatic conditions along with population growth are leading to serious competition for land and other natural resources. These factors will hamper global livestock production; amidst this chaos, the small ruminant industry is emerging as a sustainable source of farming. The small ruminant sector is known for its efficiency in producing quality products while using limited resources, its adaptability across various agro-ecological zones, its resilience to climate change, and its minimal eco-footprint. Small ruminants have a higher global average carbon footprint for milk production than cattle and buffalo (6.5 vs 2.8 and 3.4 CO2eq. per kg of milk, respectively), while meat production from small ruminants has a lower carbon footprint than cattle and buffalo (23.8 vs 46.2 and 53.4 kg of CO2eq./kg of carcass weight). The accuracy of genomic prediction for thermo-tolerance by GS was predicted to be between 0.42 and 0.61 using high-density single nucleotide polymorphism (SNP) genotypes. Despite this, small ruminant farming (sheep and goats) has not received its due recognition and is facing a threat due to climate change. Implementation of efficient ameliorative, adaptation, and mitigation strategies will have a positive impact on the sustainability of small ruminant production. In addition to this, it is of utmost importance to focus on improved breeding strategies, such as selection for adaptation and low methane emission traits, in addition to productivity traits. These breeding strategies will aid in the development of climate-resilient small ruminant breeds, which can produce efficiently across various regions and at the same time have minimal impact on ecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BAL:

Balusha sheep

BAR:

Bardhoka sheep

BCS:

Body condition score

CP:

Crude protein

DGAT1 :

Diacylglycerol O-acyltransferase 1

ESTR :

Estradiol receptor

FAO:

Food and Agriculture Organization

GDP:

Gross domestic production

GHG:

Greenhouse gases

GHR :

Growth hormone receptor

GS:

Genomic selection

GSH-Px:

Glutathione peroxidase

IGF-1 :

Insulin-like growth factor-1

K+:

Potassium ion

K2CO3:

Potassium carbonate

KHCO3:

Potassium bicarbonate

KOS:

Kosova sheep

LEP :

Leptin

MAS:

Marker-assisted selection

N2O:

Nitrous oxide

Na+:

Sodium ion

NaHCO3:

Sodium bicarbonate

NDF:

Neutral detergent fiber

NH3:

Ammonia

NRC:

National Research Council

PLR :

Prolactin receptor

Se:

Selenium

SHA:

Sharri sheep

SNP:

Single nucleotide polymorphism

THI:

Temperature-humidity index

References

  • Abdulrahman S, Mani JR, Oladimeji YU, Abdulazeez RO, Ibrahim LA (2017) Analysis of entrepreneural management and food security strategies of small ruminant women farmers in Kirikassamma local government area of Jigawa state. J Anim Prod Res 29(1):419–429

    Google Scholar 

  • Adams F, Ohene-Yankyera K (2014) Determinants of factors that influence small ruminant livestock production decisions in Northern Ghana: application of discrete regression model. J Biol Agric Healthcare 4(27):310–321

    Google Scholar 

  • Adin G, Solomon R, Nikbachat M, Zenou A, Yosef E, Brosh A, Shabtay A, Mabjeesh SJ, Halachmi I, Miron J (2009) Effect of feeding cows in early lactation with diets differing in roughage-neutral detergent fiber content on intake behavior, rumination, and milk production. J Dairy Sci 92:3364–3373

    Article  CAS  PubMed  Google Scholar 

  • Al-Dawood A (2017) Towards heat stress management in small ruminants: a review. Ann Anim Sci 17(1):59–88

    Article  Google Scholar 

  • Alvarez L, Guevara N, Reyes M, Sánchez A, Galindo F (2013) Shade effects on feeding behavior, feed intake, and daily gain of weight in female goat kids. J Vet Behav 8(6):466–470

    Article  Google Scholar 

  • Aneja VP, Schlesinger WH, Erisman JW, Behera SN, Sharma M, Battye W (2012) Reactive nitrogen emissions from crop and livestock farming in India. Atmos Environ 47:92–103

    Article  CAS  Google Scholar 

  • Archana PR, Sejian V, Ruban W, Bagath M, Krishnan G, Aleena J, Manjunathareddy GB, Beena V, Bhatta R (2018) Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Sci 141:66–80

    Article  CAS  PubMed  Google Scholar 

  • Atrian P, Shahryar HA (2012) Heat stress in dairy cows. Res Zool 2:31–37

    Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press Inc., CRC Press- A Taylor and Francis Group, US & Canada. ISBN: 9781771888110. p 400. https://doi.org/10.1201/9780429276026

  • Baumgard LH, Rhoads RP, Rhoads ML, Gabler NK, Ross JW, Keating AF, Boddicker RL, Lenka S, Sejian V (2012) Impact of climate change on livestock production. In: Environmental stress and amelioration in livestock production. Springer, Berlin, pp 413–468

    Google Scholar 

  • Ben Salem H (2010) Nutritional management to improve sheep and goat performances in semiarid regions. R Bras Zootec 39:337–347

    Article  Google Scholar 

  • Berger Y, Billon P, Bocquier F, Caja G, Cannas A, Mc Kusick B, Marnet PG, Thomas D (2004) Principles of sheep dairying in North America. Cooperative Extension Publishing, A3767. University of Wisconsin-Madison, USA, 156 pp

    Google Scholar 

  • Berman A (2006) Extending the potential of evaporative cooling for heat-stress relief. J Dairy Sci 89:3817–3825

    Article  CAS  PubMed  Google Scholar 

  • Bett RC, Kosgey IS, Bebe BO, Kahi AK (2007) Breeding goals for the Kenya dual purpose goat. I. Model development and application to smallholder production systems. Trop Anim Health Prod 39(7):477–492

    Article  CAS  PubMed  Google Scholar 

  • Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust J Exp Agric 34(2):285–295

    Article  Google Scholar 

  • Broucek J, Ryba S, Dianova M, Uhrincat M, Soch M, Sistkova M, Mala G, Novak P (2020) Effect of evaporative cooling and altitude on dairy cows milk efficiency in lowlands. Int J Biometeorol 64(3):433–444

    Article  PubMed  Google Scholar 

  • Bubsy D, Loy D (1996) Heat stress in feedlot cattle: producer survey results. In: Beef Research Report. Iowa State University AS Leaflet R1348, Iowa State University, IO, USA. pp 108–110

    Google Scholar 

  • Bytyqi H, Fuerst-Waltl B, Mehmeti H, Baumung R (2015) Economic values for production traits for different sheep breeds in Kosovo. Ital J Anim Sci 14(4):3808

    Article  Google Scholar 

  • Calamari L, Petrera F, Stefanini L, Abeni F (2013) Effects of different feeding time and frequency on metabolic conditions and milk production in heat-stressed dairy cows. Int J Biometeorol 57:785–796

    Article  CAS  PubMed  Google Scholar 

  • CALPI (2005) Sustainable Livelihood through Small Ruminant Production - Critical Issues and Approaches. Draft for Stakeholder Review. Capitalisation of Livestock Programme Experiences India/SDC/Intercooperation. September 2005

    Google Scholar 

  • Caulfield MP, Cambridge H, Foster SF, McGreevy PD (2014) Heat stress: a major contributor to poor animal welfare associated with long-haul live export voyages. Vet J 199:223–228

    Article  PubMed  Google Scholar 

  • Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR (2014) Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci 92:3364–3374

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Dahl GE, VanBaale MJ (2006) Major advances associated with environmental effects on dairy cattle. J Dairy Sci 89(4):1244–1253

    Article  CAS  PubMed  Google Scholar 

  • Conte G, Ciampolini R, Cassandro M, Lasagna E, Calamari L, Bernabucci U, Abeni F (2018) Feeding and nutrition management of heat-stressed dairy ruminants. Ital J Anim Sci 17(3):604–620

    Article  CAS  Google Scholar 

  • Da Silva RG (2010) Chapter 12-Weather and climate and animal production. In: Guide to agricultural meteorological practices, Chair, Publications Board, World Meteorological Organization (WMO), Geneva, Switzerland, pp 1–21

    Google Scholar 

  • Darcan N, Güney O (2008) Alleviation of climatic stress of dairy goats in Mediterranean climate. Small Ruminant Res 74(1–3):212–215

    Article  Google Scholar 

  • Darcan N, Cedden F, Guney O (2007) Spraying effects on goat welfare in hot and humid climate. Am J Anim Vet Sci 2(4):99–103

    Article  Google Scholar 

  • de Lima RN, de Souza Jr JBF, Batista NV (2019) Mitigating heat stress in dairy goats with inclusion of seaweed Gracilaria birdiae in diet. Small Ruminant Res 19(171):87–91

    Article  Google Scholar 

  • DeRamus HA, Clement TC, Giampola DD, Dickison PC (2003) Methane emissions of beef cattle on forages: efficiency of grazing management systems. J Environ Quality 32:269–277

    CAS  Google Scholar 

  • Dunshea FR, Leury BJ, Fahri F, DiGiacomo K, Hung A, Chauhan S, Clarke IJ, Collier R, Little S, Baumgard L, Gaughan JB (2013) Amelioration of thermal stress impacts in dairy cows. Anim Prod Sci 53(9):965–975

    Article  Google Scholar 

  • Ellamie AM, Fouda WA, Ibrahim WM, Ramadan G (2020) Dietary supplementation of brown seaweed (Sargassum latifolium) alleviates the environmental heat stress-induced toxicity in male Barki sheep (Ovis aries). J Therm Biol 89:102561

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2016) Statistical Year Book; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; Volume 1

    Google Scholar 

  • FAO, WFP, UNICEF (2019) The state of food security and nutrition in the world 2019: safeguarding against economic slowdowns and downturns

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2005) Livestock policy brief 02. FAO, Rome, Italy

    Google Scholar 

  • Gale P, Drew T, Phipps LP, David G, Wooldridge M (2009) The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J Appl Microbiol 106(5):1409–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaughan JB, Bonner S, Loxton I, Mader TL, Lisle A, Lawrence R (2010) Effect of shade on body temperature and performance of feedlot steers. J Anim Sci 88(12):4056–4067

    Article  CAS  PubMed  Google Scholar 

  • Goetsch AL (2019) Recent advances in the feeding and nutrition of dairy goats. Asian-Australas J Anim Sci 32(8):1296–1305

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Mondal T (2019) Heat stress and thermoregulatory responses of goats. Biol Rhythm Res:1–27. https://doi.org/10.1080/09291016.2019.1603692

  • Hamzaoui S, Salama AAK, Albanell E, Such X, Caja G (2013) Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. J Dairy Sci 96:6355–6365

    Article  CAS  PubMed  Google Scholar 

  • Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philos Trans Royal Soc B Biol Sci 364(1534):3341–3350

    Article  Google Scholar 

  • Huber JT, Higginbotham G, Gomez-Alarcon RA, Taylor RB, Chen KH, Chan SC, Wu Z (1994) Heat stress interactions with protein, supplemental fat, and fungal cultures. J Dairy Sci 77:2080–2090

    Article  CAS  PubMed  Google Scholar 

  • Indu S, Pareek A (2015) A review: growth and physiological adaptability of sheep to heat stress under semi–arid environment. Int J Emer Trends Sci Technol 2(9):3188–3198

    Google Scholar 

  • Indu S, Sejian V, Naqvi SMK (2014) Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in Malpura ewes under semiarid tropical environment. Anim Prod Sci 55(6):766–776

    Article  CAS  Google Scholar 

  • Islam M, Abe H, Hayashi Y, Terada F (2000) Effects of feeding Italian ryegrass with corn on rumen environment, nutrient digestibility, methane emission, and energy and nitrogen utilization at two intake levels by goats. Small Ruminant Res 38(2):165–174

    Article  Google Scholar 

  • Ismail E, Abdel-Latif H, Hassan GA, Salem MH (1995) Water metabolism and requirements of sheep as affected by breed and season. World Rev Anim Prod 30:95–105

    Google Scholar 

  • Iso-Touru T, Sahana G, Guldbrandtsen B, Lund MS, Vilkki J (2016) Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants. BMC Genet 17:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable Agriculture, Forest and Environmental Management. Springer Nature Singapore Private Ltd., 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore. eISBN: 978-981-13-6830-1, Hardcover ISBN: 978-981-13-6829-5, p 606. https://doi.org/10.1007/978-981-13-6830-1

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and Climate Change: Issues and Challenges. Apple Academic Press Inc., CRC Press- a Taylor and Francis Group, US & Canada. ISBN: 978-1-77188-790-8 (Hardcover), 978-0-42957-274-8 (E-book). p 335. https://doi.org/10.1201/9780429057274

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Khorsandi S, Riasi A, Khorvash M, Mahyari SA, Mohammadpanah F, Ahmadi F (2016) Lactation and reproductive performance of high producing dairy cows given sustained-release multi-trace element/vitamin ruminal bolus under heat stress condition. Livest Sci 187:146–150

    Article  Google Scholar 

  • Kumar D, Kumar R, Sharda K (2008) Goat husbandry under changing climate scenario in Banka district, Bihar. Goat husbandry under changing climate scenario in Banka district, Bihar. J Pharmacog Phytochem 2018(SP1):2329–2333

    Google Scholar 

  • Kumar S, Roy MM (2013) Small ruminant’s role in sustaining rural livelihoods in arid and semiarid regions and their potential for commercialization. Agrotech Publishing Academy, Udaipur, pp 57–80

    Google Scholar 

  • Lin H, Cao ZJ, Wang L (2009) Responses of milk protein and mammary amino acids metabolism to duodenal soybean small peptides and free amino acids infusion in lactating goat. J Dairy Sci 92(1):47

    Google Scholar 

  • Liu Z (2015) Carbon footprint of livestock production. Energy 5499:84–93

    Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad USA 105:14265–14270

    Article  CAS  Google Scholar 

  • Maass BL, Musale DK, Chiuri WL, Gassner A, Peters M (2012) Challenges and opportunities for smallholder livestock production in post-conflict South Kivu, eastern DR Congo. Trop Anim Health Prod 44(6):1221–1232

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino R, Atzori AS, D'Andrea M, Iovane G, Trabalza-Marinucci M, Rinaldi L (2016) Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Ruminant Res 135:50–59

    Article  Google Scholar 

  • Martin AM (2001) The future of the world food system. Outlook Agric 30(1):11–19

    Article  Google Scholar 

  • Mavangira V, Sordillo LM (2018) Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res Vet Sci 116:4–14

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for Soil Health and Sustainable Management. Springer Singapore, Singapore. pp. 541. ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7(Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

  • Meena RS, Lal R, Yadav GS (2020a) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  Google Scholar 

  • Mekonne MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15:401–415

    Article  CAS  Google Scholar 

  • Miron J, Adin G, Solomon R, Nikbachat M, Zenou A, Shamay A, Brosh A, Mabjeesh SY (2008) Heat production and retained energy in lactating cows held under hot summer conditions with evaporative cooling and fed two rations differing in roughage content and in vitro digestibility. Animal 2:843–848

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei M, Ghorbani GR, Khorvash M, Rahmani HR, Nikkhah A (2011) Chromium improves production and alters metabolism of early lactation cows in summer. J Anim Physiol Anim Nutr 95:81–89

    Article  CAS  Google Scholar 

  • Mitlöhner FM, Morrow JL, Dailey JW, Wilson SC, Galyean ML, Miller MF, McGlone JJ (2001) Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J Anim Sci 79(9):2327–2335

    Article  PubMed  Google Scholar 

  • Mohini M, Malla BA, Mondal G (2018) Small ruminant sector in India: present status, feeding systems and greenhouse gas emissions. EC Vet Sci 3(1):281–289

    Google Scholar 

  • Monteiro ALG, Faro AMCDF, Peres MTP, Batista R, Poli CHEC, Villalba JJ (2018) The role of small ruminants on global climate change. Acta Scientiarum-Animal Sci 40

    Google Scholar 

  • Monterio A, Costa JM, Lima MS (2017) Goat system production: advantages and disadvantages to the animal, environment and farmer. In goat science. Intech Open, London

    Google Scholar 

  • Moran D, Wall E (2011) Livestock production and greenhouse gas emissions: defining the problem and specifying solutions. Anim Front 1(1):19–25

    Article  Google Scholar 

  • Moran DS, Eli-Berchoer L, Heled Y, Mendel L, Schocina M, Horowitz M (2006) Heat intolerance: does gene transcription contribute? J Appl Physiol 100(4):1370–1376

    Article  CAS  PubMed  Google Scholar 

  • Morrison SR (1983) Ruminant heat stress effect on production and means of alleviation. J Anim Sci 57:1594–1600

    Article  CAS  PubMed  Google Scholar 

  • Moyo S, Swanepoel FJC (2010) Multifunctionality of livestock in developing communities. In: The role of livestock in developing communities: enhancing multifunctionality, vol 3. University of the Free State/International Livestock Research Institute (ILRI), Bloemfontein/Maputo, p 68

    Google Scholar 

  • Network WF (2017) Water footprint of crop and animal products: a comparison. S/data. Disponível em:< http://waterfootprint.org/en/water-footprint/product-waterfootprint/water-footprint-crop-and-animal-products/>. Acesso em, 14

  • Nickerson SC (2014) Management strategies to reduce heat stress, prevent mastitis and improve milk quality in dairy cows and heifers. University of Georgia. Bulletin, p 1426

    Google Scholar 

  • Niyas PAA, Chaidanya K, Shaji S, Sejian V, Bhatta R, Bagath M, Rao GSLHVP, Kurien EK, Girish V (2015) Adaptation of livestock to environmental challenges. J Vet Sci Med Diagn 4:3

    Google Scholar 

  • Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. FAO, Rome

    Google Scholar 

  • Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR (2019) Genetic selection for thermotolerance in ruminants. Animals 9:948. https://doi.org/10.3390/ani9110948

    Article  PubMed Central  Google Scholar 

  • Palmquist DL, Jenkins TC (1980) Fat in lactation rations: review. J Dairy Sci 63:1–14

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Bu DP, Wang JQ, Cheng JB, Sun XZ, Zhou LY, Qin JJ, Zhang XK, Yuan YM (2014) Effects of Radix bupleuri extract supplementation on lactation performance and rumen fermentation in heat-stressed lactating Holstein cows. Anim Feed Sci Technol 187:1–8

    Article  Google Scholar 

  • Perevolotsky A (1991) Goats or scapegoats—the overgrazing controversy in Piura, Peru. Small Ruminant Res 6(3):199–215

    Article  Google Scholar 

  • Pompeu LB, Williams JE, Spiers DE, Weaber RL, Ellersieck MR, Sargent KM, Feyerabend NP, Vellios HL, Evans F (2011) Effect of Ascophyllum nodosum on alleviation of heat stress in dairy cows. Prof Anim Sci 27:181–189

    Article  Google Scholar 

  • Pragna P, Chauhan SS, Sejian V, Leury BJ, Dunshea FR (2018a) Climate change and goat production: enteric methane emission and its mitigation. Animals 8:235. https://doi.org/10.3390/ani8120235

    Article  PubMed Central  Google Scholar 

  • Pragna P, Sejian V, Bagath M, Krishnan G, Archana PR, Soren NM, Beena V, Bhatta R (2018b) Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J Anim Physiol Anim Nutr 102(4):825–836

    Article  CAS  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press Inc., CRC Press- A Taylor and Francis Group, US & Canada. ISBN: 9781771888226. p 383. https://doi.org/10.1201/9780429286759

  • Rana M, Hashem M, Akhter S, Habibullah M, Islam M, Biswas R (2014) Effect of heat stress on carcass and meat quality of indigenous sheep of Bangladesh. Bangladesh J Anim Sci 43(2):147–153

    Article  Google Scholar 

  • Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(5):707–728

    Article  CAS  PubMed  Google Scholar 

  • Rhoads RP, Baumgard LH, Suagee JK, Sanders SR (2013) Nutritional interventions to alleviate the negative consequences of heat stress. Adv Nutr 4:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richkowsky BA, Tibbo M, Iniguez L (2008) Strengthening sustainable use of small ruminant genetic resources in the drylands in the WANA region. In: Sustainable development in drylands–meeting the challenge of global climate change, vol 7. International Dryland Development Commission (IDDC), Cairo, p 227

    Google Scholar 

  • Rodríguez DI, Anríquez G, Riveros JL (2016) Food security and livestock: the case of Latin America and the Caribbean. Ciencia e Investigación Agraria 43(1):5–15

    Article  Google Scholar 

  • Rotz CA, Asem-Hiablie S, Place S, Thoma G (2019) Environmental footprints of beef cattle production in the United States. Agric Syst 169:1–13

    Article  Google Scholar 

  • Rust JM, Rust T (2013) Climate change and livestock production: a review with emphasis on Africa. South Afr J Anim Sci 43(3):255–267

    Article  Google Scholar 

  • Sainz RD (2003) Livestock-environment initiative fossil fuels component: framework for calculating fossil fuel use in livestock systems. Obtained from www.fao.org

    Google Scholar 

  • Salama AAK, Caja G, Hamzaoui S, Badaoui B, Castro-Costa A, Façanha DAE, Guilhermino MM, Bozzi R (2014) Different levels of response to heat stress in dairy goats. Small Ruminant Res 121(1):73–79

    Article  Google Scholar 

  • Samara EM, Abdoun KA, Okab AB, Al-Badwi MA, El-Zarei MF, Al-Seaf AM, Al-Haidary AA (2016) Assessment of heat tolerance and production performance of Aardi Damascus and their crossbred goats. Int J Biometeorol 60(9):1377–1387

    Article  PubMed  Google Scholar 

  • Sanchez WK, McGuire MA, Beede DK (1994) Macromineral nutrition by heat stress interactions in dairy cattle: review and original research. J Dairy Sci 77:2051–2079

    Article  CAS  PubMed  Google Scholar 

  • Sarangi S (2018) Adaptability of goats to heat stress: a review. Pharma Innov J 7(4):1114–1126

    Google Scholar 

  • Seixas L, de Melo CB, Tanure CB, Peripolli V, McManus C (2017) Heat tolerance in Brazilian hair sheep. Asian-Australasian J Anim Sci 30(4):593–601

    Article  Google Scholar 

  • Sejian V (2013) Climate change: impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: a review. Indian J Small Ruminants 19(1):1–21

    Google Scholar 

  • Sejian V, Maurya VP, Kumar K, Naqvi SMK (2012a) Effect of multiple stresses (thermal, nutritional, and walking stress) on the reproductive performance of Malpura ewes. Vet Med Int. https://doi.org/10.1155/2012/471760

  • Sejian V, Valtorta S, Gallardo M, Singh AK (2012b) Ameliorative measures to counteract environmental stresses. In: Environmental stress and amelioration in livestock production. Springer, Berlin, pp 153–180

    Google Scholar 

  • Sejian V, Hyder I, Malik PK, Soren NM, Mech A, Mishra A, Ravindra JP, Bhatta R, Takahashi J, Kohn RA, Prasad CS (2015a) Strategies for alleviating abiotic stress in livestock. In: Malik PK, Bhatta R, Takahashi J, Kohn RA, Prasad CS (eds) Livestock production and climate change. CAB International, pp 25–60

    Google Scholar 

  • Sejian V, Samal L, Haque N, Bagath M, Hyder I, Maurya VP, Bhatta R, Ravindra JP, Prasad CS, Lal R (2015b) Overview on adaptation, mitigation and amelioration strategies to improve livestock production under the changing climatic scenario. In: Sejian V, Gaughan J, Baumgard L, Prasad C. (eds) Climate change impact on livestock: adaptation and mitigation. Springer, New Delhi, pp 359–397

    Google Scholar 

  • Sejian V, Bhatta R, Gaughan J, Malik PK, Naqvi SMK, Lal R (2017) Adapting sheep production to climate change. In: Sejian V, Bhatta R, Gaughan J, Malik PK, Naqvi SMK, Lal R (eds) Sheep production adapting to climate change. Springer, Singapore, pp 1–29

    Google Scholar 

  • Sejian V, Bhatta R, Gaughan JB, Dunshea FR, Lacetera N (2018) Adaptation of animals to heat stress. Animal 12:s431–s444

    Google Scholar 

  • Sejian V, Bagath M, Krishnana G, Rashamola VP, Pragna P, Devaraja C, Bhatta R (2019) Genes for resilience to heat stress in small ruminants: a review. Small Ruminant Res 173:42–53

    Article  Google Scholar 

  • Shafie MM, Murad HM, El-Bedawy TM, Salem SM (1994) Effect of heat stress on feed intake, rumen fermentation and water turnover in relation to heat tolerance response by sheep. Egyptian J Anim Prod 31:317–327

    Article  Google Scholar 

  • Shinde AK, Sejian V (2013) Sheep husbandry under changing climate scenario in India: an overview. Indian J Anim Sci 83(10):998–1008

    Google Scholar 

  • Shwartz G, Rhoads ML, Dawson KA, VanBaale MJ, Rhoads RP, Baumgard LH (2009) Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J Dairy Sci 92:935–942

    Article  CAS  PubMed  Google Scholar 

  • Silanikove N (2000) The physiological basis of adaptation in goats to harsh environments. Small Ruminant Res 35(3):181–193

    Article  Google Scholar 

  • Silanikove N, Koluman N (2015) Impact of climate change on the dairy industry in temperate zones: predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Res 123:27–34

    Article  Google Scholar 

  • Silanikove N, Leitner G, Merin U, Prosser CG (2010) Recent advances in exploiting goat's milk: quality, safety and production aspects. Small Ruminant Res 89(2–3):110–124

    Article  Google Scholar 

  • Soni PK, Bhar R, Patel RN, Kumar K, Shafi BUD (2018) Effect of supplementing Tinospora cordifolia in the diet of Gaddi goats exposed to heat stress on nutrient intake, utilization and physiological parameters. J Entomol Zool Stud 6(4):271–275

    Google Scholar 

  • Soto-Navarro SA, Krehbiel CR, Duff GC, Galyean ML, Brown MS, Steiner RL (2000) Influence of feed intake fluctuation and frequency of feeding on nutrient digestion, digesta kinetics, and ruminal fermentation profiles in limit-fed steers. J Anim Sci 78:2215–2222

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: Environmental issues and options. FAO, Rome, Italy. Accessed 9 Jan 2012. ftp://ftp.fao.org/docrep/fao/010/a0701e/A0701E.pdf

  • Tabar IB, Keyhani A, Rafiee S (2010) Energy balance in Iran’s agronomy (1990e2006). Renew Sustain Energ Rev 14:849e855

    Google Scholar 

  • Tao S, Connor EE, Bubolz JW, Thompson IM, Do Amaral BC, Hayen MJ, Dahl GE (2013) Effect of heat stress during the dry period on gene expression in mammary tissue and peripheral blood mononuclear cells. J Dairy Sci 96(1):378–383

    Article  CAS  PubMed  Google Scholar 

  • Teague WR, Provenza F, Kreuter UP, Steffens T, Barnes M (2013) Multi-paddock grazing on rangelands: why the perceptual dichotomy between research results and rancher experience? J Environ Mgt 128:699–717

    Article  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans Royal Soc B: Biol Sci 365(1554):2853–2867

    Article  Google Scholar 

  • Umutoni C, Ayantunde A, Sawadogo GJ (2015) Evaluation of feed resources in mixed crop-livestock systems in Sudano-Sahelian zone of Mali in West Africa. Int J Livestock Res 5(8):27–36

    Article  Google Scholar 

  • UNPD (United Nations Population Division) (2008) The 2006 revision and world urbanization prospects: the 2005 Revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects. See http://esa.un.org/unpp

  • West JW (1999) Nutritional strategies for managing the heat-stressed dairy cow. J Anim Sci 77:21–35

    Article  CAS  PubMed  Google Scholar 

  • West JW, Mullinix BG, Bernard JK (2003) Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J Dairy Sci 86:232–242

    Article  CAS  PubMed  Google Scholar 

  • Wodajo HD, Gemeda BA, Kinati W, Mulem AA, van Eerdewijk A, Wieland B (2020) Contribution of small ruminants to food security for Ethiopian smallholder farmers. Small Ruminant Res 184:106064. https://doi.org/10.1016/j.smallrumres.2020.106064

    Article  Google Scholar 

  • World Bank (2009) Minding the stock: bringing public policy to bear on livestock sector development. Report no. 44010-GLB. Washington, DC

    Google Scholar 

  • Xu RT, Pan SF, Chen J, Chen GS, Yang J, Dangal SRS, Tian HQ (2018) Half-century ammonia emissions from agricultural systems in Southern Asia: magnitude, spatiotemporal patterns, and implications for human health. Geo Health 2(1):40–53

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sejian, V. et al. (2021). Opportunities, Challenges, and Ecological Footprint of Sustaining Small Ruminant Production in the Changing Climate Scenario. In: Banerjee, A., Meena, R.S., Jhariya, M.K., Yadav, D.K. (eds) Agroecological Footprints Management for Sustainable Food System. Springer, Singapore. https://doi.org/10.1007/978-981-15-9496-0_12

Download citation

Publish with us

Policies and ethics