Skip to main content

Functional Defense Signals in Plants

  • Chapter
  • First Online:
Microbial Metatranscriptomics Belowground
  • 1107 Accesses

Abstract

Plants live in a complex environment where they interact with a number of microbial pathogens with varying lifestyles and infection strategies. Numerous morphological, biochemical, and molecular mechanisms exist to cope with the effects of pathogen infection. Some mechanisms are preexisting and others induced upon infection of pathogens or attack of herbivores. Phytohormones have been shown to play key role in plant defense, and they mediate defense signaling cascades in plants. Phytohormones such as salicylic acid, jasmonic acid, and ethylene have been shown to play crucial role in the regulation of defense signaling. Understanding of function of complex defense signaling network is important. The present chapter is aimed to study about the role of phytohormones in induction of defense mechanism in plants. Moreover, this study covers the defense mechanisms (existing/induced) in the plants against the phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auh CK, Murphy TM (1995) Plasma membrane redox enzyme is involved in the synthesis of O2− and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant-microbe and plant-insect interactions. Plant Physiol 107(4):1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus Jasmonate. Plant Biol (Stuttg) 8(1):1–10

    Article  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty J, Sen S, Ghosh P, Jain A, Das S (2020) Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition. BMC Plant Biol 20(1):319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, Gong Z (2006) Mutation in ABO1/ELO2, a subunit of Holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 26:6902–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Fonseca S, Chico JM et al (2009) The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–87

    Article  CAS  PubMed  Google Scholar 

  • Choi ESDC (2015) Functional studies of transcription factors involved in plant defenses in the genomics era. Brief Funct Genomics 14(4):260–267

    Article  PubMed  Google Scholar 

  • De Vos AS, Strydom H, Fouché CB, Delport CSL (2005a) Research at grass roots: for the social science professionals, 3rd edn. Van Schaik, Pretoria

    Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM et al (2005b) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18(9):923–937

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A et al (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    Article  CAS  PubMed  Google Scholar 

  • Fu MS, De Sordi L, Muhlschlegel FA (2012) Functional characterization of the small heat shock protein Hsp12p from Candida albicans. PLoS One 7(8):e42894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Bosch C (2018) Priming plant resistance by activation of redox-sensitive genes. Free Radical Biol and Med 122:171–180

    Article  CAS  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420

    Article  CAS  PubMed  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    Article  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94(2):261–271

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturease modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci U S A 98:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Koornneef A, Corne MJ (2008) Pieterse cross talk in defense signaling. Plant Physiol 146(3):839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  CAS  PubMed  Google Scholar 

  • Lai Y-S, Renna L, Yarema J et al (2018) Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. PNAS 115(22):E5203–E5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lambeth J (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  • Little D, Gouhier-Darimont C, Bruessow F, Reymond P (2007) Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol 143:784–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  CAS  PubMed  Google Scholar 

  • Lumba S, Cutler S, McCourt P (2010) Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu Rev Cell Dev Biol 26:445–469

    Article  CAS  PubMed  Google Scholar 

  • Maier F, Zwicker S, Huckelhoven A et al (2011) Nonexpressor of pathogenesis-related proteins1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol 12(1):73–91

    Article  CAS  PubMed  Google Scholar 

  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48:833–842

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  PubMed  Google Scholar 

  • Murray SL, Thomson C, Chini A, Read ND, Loake GJ (2002) Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Mol Plant-Microbe Ineract 15:557–566

    Article  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible plant-pseudomonas syringae interactions. Curr Opin Plant Biol 8(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates-signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Proietti S, Bertini L, Timperio AM et al (2013) Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Mol BioSyst 9:1169–1187

    Article  CAS  PubMed  Google Scholar 

  • Radojicic A, Li X, Zhang Y (2018) Salicylic acid: a double-edged sword for programed cell death in plants. Front Plant Sci 9:1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Sifuentes L, Marszalek JE, Chuck-Hernández C, Serna-Saldívar SO (2020) Legumes protease inhibitors as biopesticides and their defense mechanisms against biotic factors. Int J Mol Sci 21(9):3322

    Article  PubMed Central  CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459(7250):1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochemistry 70:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Kachroo P, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–574

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy GS (1999) Drought signaling in plants. Resonance 4(6):34–44

    Article  CAS  Google Scholar 

  • Takahashi H, Miller J, Nozaki Y et al (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Walters D, Newton A, Lyon G (2007) Induced resistance for plant defence: a sustainable approach to crop protection. Blackwell, Oxford

    Book  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silver leaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143(2):866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Cao X, Cao X et al (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors thank Prof B. N. Mishra for providing innovative suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qidwai, T., Shreeya, T., Saha, S., Sharma, M. (2021). Functional Defense Signals in Plants. In: Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (eds) Microbial Metatranscriptomics Belowground. Springer, Singapore. https://doi.org/10.1007/978-981-15-9758-9_25

Download citation

Publish with us

Policies and ethics