Skip to main content

Scope of Improvement in Assembly-line of FMCG Industries through Ergonomic Design

  • Conference paper
  • First Online:
Design for Tomorrow—Volume 3

Abstract

In the industry 4.0 era, the assembly-line work forms the basis of various manufacturing industries, viz. the automotive, the electronic component manufacturing, and the Fast Moving Consumer Goods (FMCG). FMCG assembly-lines are distinct from the automotive and the electronic component manufacturing assembly-lines. These are high paced, and semi-automatic in nature and comprises short-cycled repetitive work. The researchers and engineers have taken several different approaches to improve the assembly-line related work in automotive and electronic component manufacturing industries, from a design and ergonomics perspective. However, very little is known about such design and ergonomic interventions pertaining to FMCG assembly-lines. This paper aims to find out to what extent the same/similar approaches associated with ergonomic design interventions applied in assembly-line work in diverse industrial sectors can be adopted/applied to the FMCG sector to improve productivity and OSH following the state-of-the-art literature review. Hence, the current paper assesses the need and determines the scope of ‘Ergonomic Design Interventions’ in assembly-line-related work in the FMCG sector. In this paper, authors have emphasized and advocated implementing ergonomic principles in assembly-line work of the FMCG sector in conjunction with productivity enhancement tools/techniques to ensure enhanced OSH and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IBEF FMCG Report (2020), https://www.ibef.org/download/FMCG-April-2020.pdf

  2. Docherty, P., Forslin, J., Shani, A.B.: Creating Sustainable Work systems—Emerging Perspectives and Practices, 2nd edn. Routledge Press, London (2002)

    Google Scholar 

  3. Bilgen, B., Gunther, H.O.: Integrated production and distribution planning in the fast moving consumer goods industry: a block planning application. Oper. Res. Spectr. 32(4), 927–955 (2010). https://doi.org/10.1007/s00291-009-0177-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumann, P., Trautmann, N.: A hybrid method for large-scale short-term scheduling of make-and-pack production processes. Eur. J. Oper. Res. 236(2), 718–735 (2014). https://doi.org/10.1016/j.ejor.2013.12.040

    Article  MathSciNet  MATH  Google Scholar 

  5. Fredriksson, K., Bildt, C., Hägg, G., Kilbom, Å.: The impact on musculoskeletal disorders of changing physical and psychosocial work environment conditions in the automobile industry. Int. J. Ind. Ergon. 28(1), 31–45 (2001). https://doi.org/10.1016/S0169-8141(01)00011-7

    Article  Google Scholar 

  6. Xu, Z., Ko, J., Cochran, D.J., Jung, M.C.: Design of assembly lines with the concurrent consideration of productivity and upper extremity musculoskeletal disorders using linear models. Comput. Indus. Eng. 62(2), 431–441 (2012). https://doi.org/10.1016/j.cie.2011.10.008

    Article  Google Scholar 

  7. Otto, A., Battaïa, O.: Reducing physical ergonomic risks at assembly lines by line balancing and job rotation: a survey. Comput. Ind. Eng. 111, 467–480 (2017). https://doi.org/10.1016/j.cie.2017.04.011

    Article  Google Scholar 

  8. Bao, S., Winkel, J., Shahnavaz, H.: Prevalence of musculoskeletal disorders at workplaces in the People’s Republic of China. Int. J. Occup. Saf. Ergon. 6(4), 557–574 (2000). https://doi.org/10.1080/10803548.2000.11076472

    Article  Google Scholar 

  9. Pullopdissakul, S., Ekpanyaskul, C., Taptagaporn, S., Bundhukul, A., Thepchatri, A.: Upper extremities musculoskeletal disorders: prevalence and associated ergonomic factors in an electronic assembly factory. Int. J. Occup. Med. Environ. Health 26(5), 751–761 (2013). https://doi.org/10.2478/s13382-013-0150-y

    Article  Google Scholar 

  10. Mor, R.S., Bhardwaj, A., Singh, S., Sachdeva, A.: Productivity gains through standardization-of-work in a manufacturing company. J. Manuf. Technol. Manage. 30(6), 899–919 (2019). https://doi.org/10.1108/JMTM-07-2017-0151

    Article  Google Scholar 

  11. Lämkull, D., Hanson, L., Örtengren, R.: A comparative study of digital human modelling simulation results and their outcomes in reality: a case study within manual assembly of automobiles. Int. J. Ind. Ergon. 39(2), 428–441 (2009). https://doi.org/10.1016/j.ergon.2008.10.005

    Article  Google Scholar 

  12. Sivasankaran, P., Shahabudeen, P.: Literature review of assembly line balancing problems. Int. J. Adv. Manuf. Technol. 73(9–12), 1665–1694 (2014). https://doi.org/10.1007/s00170-014-5944-y

    Article  Google Scholar 

  13. Iranzo, S., Piedrabuena, A., Iordanov, D., Martinez-Iranzo, U., Belda-Lois, J.M.: Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Appl. Ergon. 87, 103120 (2020). https://doi.org/10.1016/j.apergo.2020.103120

    Article  Google Scholar 

  14. Finco, S., Battini, D., Delorme, X., Persona, A., Sgarbossa, F.: Workers’ rest allowance and smoothing of the workload in assembly lines. Int. J. Prod. Res. 58(4), 1255–1270 (2020). https://doi.org/10.1080/00207543.2019.1616847

    Article  Google Scholar 

  15. Dalle, M.M., Dini, G.: Optimizing ergonomics in assembly lines: a multi objective genetic algorithm. CIRP J. Manuf. Sci. Technol. 27, 31–45 (2019). https://doi.org/10.1016/j.cirpj.2019.08.004

    Article  Google Scholar 

  16. Dode, P., Greig, M., Zolfaghari, S., Neumann, W.P.: Integrating human factors into discrete event simulation: a proactive approach to simultaneously design for system performance and employees’ well being. Int. J. Prod. Res. 54(10), 3105–3117 (2016). https://doi.org/10.1080/00207543.2016.1166287

    Article  Google Scholar 

  17. Moussavi, S.E., Zare, M., Mahdjoub, M., Grunder, O.: Balancing high operator’s workload through a new job rotation approach: application to an automotive assembly line. Int. J. Ind. Ergon. 71, 136–144 (2019). https://doi.org/10.1016/j.ergon.2019.03.003

    Article  Google Scholar 

  18. Vahtera, J., Kivimäki, M., Pentti, J.: Effect of organizational downsizing on health of employees. The Lancet 350, 1124–1128 (1997). https://doi.org/10.1016/S0140-6736(97)03216-9

    Article  Google Scholar 

  19. Landsbergis, P.A., Cahill, J., Schnall, P.: The impact of lean production and related new systems of work organization on worker health. J. Occup. Health Psychol. 4(2), 108 (1999). https://doi.org/10.1037/1076-8998.4.2.108

    Article  Google Scholar 

  20. Cullinane, S., Bosak, J., Flood, P., Demerouti, E.: Job design under lean manufacturing and the quality of working life: a job demands and resources perspective. Int. J. Human Resour. Manage. 25(21), 2996–3015 (2014). https://doi.org/10.1080/09585192.2014.948899

    Article  Google Scholar 

  21. Huo, M.L., Boxall, P.: Are all aspects of lean production bad for workers? An analysis of how problem-solving demands affect employee wellbeing. Human Resour. Manage. J. 28(4), 569–584 (2018). https://doi.org/10.1111/1748-8583.12204

    Article  Google Scholar 

  22. Shah, R., Ward, P.T.: Lean manufacturing: context, practice bundles, and performance. J. Oper. Manage. 21(2), 129–149 (2003). https://doi.org/10.1016/S0272-6963(02)00108-0

    Article  Google Scholar 

  23. Kuhlang, P., Edtmayr, T., Sihn, W.: Methodical approach to increase productivity and reduce lead time in assembly and production-logistic process. J. Manuf. Sci. Technol. 4(1), 24–32 (2011). https://doi.org/10.1016/j.cirpj.2011.02.001

    Article  Google Scholar 

  24. Botti, L., Mora, C., Regattieri, A.: Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Comput. Ind. Eng. 111, 481–491 (2017). https://doi.org/10.1016/j.cie.2017.05.011

    Article  Google Scholar 

  25. Yee, K.L., Shah, N.: Scheduling of multistage fast-moving consumer goods plants. J. Oper. Res. Soc. 48(12), 1201–1214 (1997). https://doi.org/10.1057/palgrave.jors.2600482

    Article  MATH  Google Scholar 

  26. Van Elzakker, M.A.H., Zondervan, E., Raikar, N.B., Hoogland, H., Grossmann, I.E.: An SKU decomposition algorithm for the tactical planning in the FMCG industry. Comput. Chem. Eng. 62, 80–95 (2014). https://doi.org/10.1016/j.compchemeng.2013.11.008

    Article  Google Scholar 

  27. Wansink, B., Huffman, C.: Revitalizing mature packaged goods. J. Prod. Brand Manage. 10(4), 228–242 (2001). https://doi.org/10.1108/EUM0000000005673

    Article  Google Scholar 

  28. Rundh, B.: The multi-faceted dimension of packaging. Br. Food J. 107(9), 670–684 (2005). https://doi.org/10.1108/00070700510615053

    Article  Google Scholar 

  29. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017). https://doi.org/10.1016/j.jii.2017.04.005

    Article  Google Scholar 

  30. Rauch, E., Linder, C., Dallasega, P.: Anthropocentric perspective of production before and within Industry 4.0. Comput. Ind. Eng. 139, 105644 (2020). https://doi.org/10.1016/j.cie.2019.01.018

  31. Oke, A., Long, M.: An analysis of the downstream logistics operations of a South African FMCG producer. Int. J. Prod. Econ. 108(1–2), 176–182 (2007). https://doi.org/10.1016/j.ijpe.2006.12.031

    Article  Google Scholar 

  32. Hughes, R.E., Nelson, N.A.: Quantifying relationships between selected work-related risk factors and backpain: a systematic review of objective biomechanical measures and cost-related health outcomes. Int. J. Ind. Ergon. 39(1), 202–210 (2009). https://doi.org/10.1016/j.ergon.2008.06.003

    Article  Google Scholar 

  33. Hansson, A., Balogh, S., Birgitta, O., Skerfving, S.: Impact of physical exposure on neck and upper limb disorders in female workers. Appl. Ergon. 31(3), 301–310 (2000). https://doi.org/10.1016/S0003-6870(99)00047-2

    Article  Google Scholar 

  34. Bridger, R.S.: Introduction to Human Factors and Ergonomics. CRC Press, New York (2018)

    Google Scholar 

  35. Feuerstein, M., Nicholas, R., Huang, G., Rogers, H.: Job stress management and ergonomic intervention for work-related upper extremity symptoms. Appl. Ergon. 35, 565–574 (2004). https://doi.org/10.1016/j.apergo.2004.05.003

    Article  Google Scholar 

  36. Commissaris, D.A., Huysmans, M.A., Hendriksen, I.J.: Interventions to reduce sedentary behaviour and increase physical activity during productive work: a systematic review. Scand. J. Work Environ. Health 42(3), 181–191 (2016). https://doi.org/10.5271/sjweh.3544

    Article  Google Scholar 

  37. Werner, R.A., Gell, N., Hartigan, A., Wiggerman, N., Keyserling, W.M.: Risk factors for plantar fasciitis among assembly plant workers. PM&R 2(2), 110–116 (2010). https://doi.org/10.1016/j.pmrj.2009.11.012

    Article  Google Scholar 

  38. Scott, P.A. (ed.): Ergonomics in Developing Regions. CRC Press, New York (2009)

    Google Scholar 

  39. Dianat, I., Rahimi, S., Nedaei, M., Jafrabadi, M.A., Oskouei, A.E.: Effects of tool handle dimension and workpiece orientation and size on wrist ulnar/radial torque strength, usability and discomfort in a wrench task. Appl. Ergon. 59, 422–430 (2017). https://doi.org/10.1016/j.apergo.2016.10.004

    Article  Google Scholar 

  40. OSHA Manual, Prevention of musculoskeletal Injuries in Poultry Processing, https://www.osha.gov/Publications/OSHA3213.pdf

  41. De Carlo, F., Arleo, M.A., Borgia, O., Tucci, M.: Layout design for a low capacity manufacturing line: a case study. Int. J. Eng. Bus. Manage. 5(35), 1–10 (2013). https://doi.org/10.5772/56883

    Article  Google Scholar 

  42. Putri, N.T., Dona, L.S.: Application of lean manufacturing concept for redesigning facilities layout in Indonesian home-food industry. The TQM J. 31(5), 815–830 (2019). https://doi.org/10.1108/TQM-02-2019-0033

    Article  Google Scholar 

  43. Kovács, G.: Combination of Lean value-oriented conception and facility layout design for even more significant efficiency improvement and cost reduction. Int. J. Prod. Res. 58(10), 2916–2936 (2020). https://doi.org/10.1080/00207543.2020.1712490

    Article  Google Scholar 

  44. Demirel, H.O., Duffy, V.G.: Applications of digital human modeling in industry. In: International Conference on Digital Human Modeling 2007, pp. 824–832. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73321-8_93

  45. Dukic, T., Rönnäng, M., Christmansson, M.: Evaluation of ergonomics in a virtual manufacturing process. J. Eng. Des. 18(2), 125–137 (2007). https://doi.org/10.1080/09544820600675925

    Article  Google Scholar 

  46. Longo, F., Mirabelli, G.: Effective design of an assembly line using modelling and simulation. J. Simul. 3(1), 50–60 (2009). https://doi.org/10.1057/jos.2008.18

    Article  Google Scholar 

  47. Vallone, M., Naddeo, A., Cappetti, N., Califano, R.: Comfort driven redesign methods: an application to mattresses production systems. Open Mech. Eng. J. 9(1), 492–507 (2015). https://doi.org/10.2174/1874155X01509010492

    Article  Google Scholar 

  48. Karmakar, S., Solomon, R.: Ergonomic evaluations and design interventions for shop-floors dealing with chemical conversion coatings: case study from India. In: International Conference on Applied Human Factors and Ergonomics, pp. 857–868. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60582-1_87

  49. Sanjog, J., Patel, T., Karmakar, S.: Occupational ergonomics research and applied contextual design implementation for an industrial shop-floor workstation. Int. J. Ind. Ergon. 72, 188–198 (2019). https://doi.org/10.1016/j.ergon.2019.05.009

    Article  Google Scholar 

  50. Dempsey, P.G., Mathiassen, S.E., Jackson, J.A., O’Brien, N.V.: Influence of three principles of pacing on the temporal organisation of work during cyclic assembly and disassembly tasks. Ergonomics 53(11), 1347–1358 (2010). https://doi.org/10.1080/00140139.2010.520745

    Article  Google Scholar 

  51. Looze, M.P., Rhijn, J.W., Schoenmaker, N., Deursen, J.V.: Productivity and discomfort in assembly work: the effects of an ergonomic workplace adjustment at Philips DAP. In: Vink, P. (ed.) Comfort and Design, pp. 129–136. CRC Press, New York (2005)

    Google Scholar 

  52. Binoosh, S.A., Mohan, G.M., Ashok, P., Dhana Sekaran, K.: Virtual postural assessment of an assembly work in a small-scale submersible pump manufacturing industry. Work 58(4), 567–578 (2017). https://doi.org/10.3233/WOR-172635

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Karmakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, G., Karmakar, S. (2021). Scope of Improvement in Assembly-line of FMCG Industries through Ergonomic Design. In: Chakrabarti, A., Poovaiah, R., Bokil, P., Kant, V. (eds) Design for Tomorrow—Volume 3. Smart Innovation, Systems and Technologies, vol 223. Springer, Singapore. https://doi.org/10.1007/978-981-16-0084-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0084-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0083-8

  • Online ISBN: 978-981-16-0084-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics