Skip to main content

Potential of Long Non-coding RNAs in the Diagnosis and Therapy of Melanoma Skin Cancer

  • Chapter
  • First Online:
  • 606 Accesses

Abstract

Skin carcinoma is categorized into melanoma and non-melanoma. Melanoma is among the highly aggressive and deadly forms of skin cancer. Melanoma is frequently associated with metastasis and therapeutic resistance. The combined immunotherapy and targeted therapies have emerged as attractive therapeutic options. However, the efficacy of these therapies is limited to advanced-stage melanoma and those who often acquire resistance. Over the years, the molecular bases of melanoma have been unraveled, which led to establishing specific and reliable biomarkers for the diagnosis, prognosis, and therapy. A good strategy in finding novel cancer targets could include shifting from the protein-translating regions to the genome’s non-coding regions. The non-coding regions constitute approximately 98% of the genome. The microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two major classes of non-coding RNAs. Apart from coding RNA’s, lncRNAs have also been attributed to exhibit proto-oncogenic and tumor suppressor roles in various cancers, including melanoma. This chapter summarizes the recent advancement of lncRNAs concerning diagnosis, prognosis, and therapy of melanoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AKT:

Protein Kinase B

ANRIL:

Antisense non-coding RNA in the INK4 locus

AR:

Androgen receptor

ASOs:

Antisense specific oligonucleotides

BANCR:

v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-activated non-coding RNA

Brn3a:

Brain-specific homeobox protein 3a

BSC:

Basal cell carcinoma

CASC15:

Cancer susceptibility candidate 15

cSCC:

Cutaneous squamous cell carcinoma

DIRC3:

Disrupted in renal carcinoma 3

dsRNAs:

Double-stranded RNAs

EMICERI:

EQTN MOB3B IFNK C9orf72 enhancer RNA I

EMT:

Epithelial-mesenchymal transition

ERK1/2:

Extracellular signal-regulated protein kinases 1/2

FALEC:

Focally amplified long non-coding RNA in epithelial cancer

FISH:

Fluorescence in situ hybridization

GAS5:

Growth arrest-specific 5

GEO:

Gene expression omnibus

GO:

Gene ontology

HOTAIR:

HOX transcript antisense RNA

IGFBP5:

Insulin-like growth factor binding protein 5

ISH:

In situ hybridization

JNK:

Jun N-terminal kinase

LNA:

Locked nucleic acid

LncRNAs:

Long non-coding RNAs

LNM:

Lymph node metastasis

MALAT1:

Metastasis associated lung adenocarcinoma transcript 1

MAPK:

Mitogen-activated protein kinase

MEG3:

Maternally expressed 3

MIFT:

Microphthalmia-associated transcription factor

miRNAs:

microRNAs

MMP:

Matrix metalloproteinase

NB:

Northern blotting

ncRNAs:

Non-coding RNAs

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

NGS:

Next-generation sequencing

NMCCs:

Non-melanoma cutaneous carcinomas

OS:

Overall survival

PCR:

Polymerase chain reaction

PI3K:

Phosphoinositol-3-kinase

PRC1/2:

Polychrome repressive complex 1 and 2

PSF:

Poly-pyrimidine tract-binding protein-associated splicing factor

PVT1:

Plasmacytoma variant translocation 1

qRT-PCR:

Quantitative reverse transcription PCR

RNAi:

RNA interference

RNA-seq:

RNA-sequencing

RTK:

Receptor tyrosine kinase

SAMMSON:

Survival associated mitochondrial-melanoma specific oncogenic non-coding RNA

shRNA:

Short hairpin RNA

siRNA:

Short interference RNA

SLNCR1:

SRA-like non-coding RNA1

SNHG5:

SnoRNA host gene 5

SPRY4-IT1:

Sprouty4-intronic transcript 1

ssRNAs:

Single-stranded RNAs

STAT3:

Signal transducer and activator of transcription 3

TCGA:

The cancer genome atlas

UCA1:

Urothelial carcinoma associated 1

WNT:

Wingless-related integration site

XIST:

X-inactive specific transcript

References

  1. Asgari MM, Moffet HH, Ray GT, Quesenberry CP (2015) Trends in basal cell carcinoma incidence and identification of high-risk subgroups, 1998–2012. JAMA Dermatol 151(9):976–981. https://doi.org/10.1001/jamadermatol.2015.1188

    Article  PubMed  Google Scholar 

  2. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM (2015) Incidence estimate of nonmelanoma skin Cancer (keratinocyte carcinomas) in the U.S. population, 2012. JAMA Dermatol 151(10):1081–1086. https://doi.org/10.1001/jamadermatol.2015.1187

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  5. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D (2017) Epidemiological trends in skin cancer. Dermatol Pract Concept 7(2):1–6. https://doi.org/10.5826/dpc.0702a01

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh BP, Salama AK (2016) Updates in therapy for advanced melanoma. Cancers 8(1):17. https://doi.org/10.3390/cancers8010017

    Article  CAS  PubMed Central  Google Scholar 

  7. Alcala AM, Flaherty KT (2012) BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance. Clin Cancer Res 18(1):33–39. https://doi.org/10.1158/1078-0432.CCR-11-0997

    Article  CAS  PubMed  Google Scholar 

  8. Kugel CH 3rd, Aplin AE (2014) Adaptive resistance to RAF inhibitors in melanoma. Pigment Cell Melanoma Res 27(6):1032–1038. https://doi.org/10.1111/pcmr.12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roesch A (2015) Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogene 34(23):2951–2957. https://doi.org/10.1038/onc.2014.249

    Article  CAS  PubMed  Google Scholar 

  10. Wellbrock C (2014) MAPK pathway inhibition in melanoma: resistance three ways. Biochem Soc Trans 42(4):727–732. https://doi.org/10.1042/BST20140020

    Article  CAS  PubMed  Google Scholar 

  11. Reddy SM, Reuben A, Wargo JA (2016) Influences of BRAF inhibitors on the immune microenvironment and the rationale for combined molecular and immune targeted therapy. Curr Oncol Rep 18(7):42. https://doi.org/10.1007/s11912-016-0531-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigo R, Hubbard TJ (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760–1774. https://doi.org/10.1101/gr.135350.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller DFB, Yan PX, Fang F, Buechlein A, Ford JB, Tang H, Huang TH, Burow ME, Liu Y, Rusch DB, Nephew KP (2015) Stranded whole transcriptome RNA-Seq for all RNA types. Curr Protoc Hum Genet 84:11. https://doi.org/10.1002/0471142905.hg1114s84

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long non-coding RNAs. Genome Res 17(5):556–565. https://doi.org/10.1101/gr.6036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  16. Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40(14):6391–6400. https://doi.org/10.1093/nar/gks296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cantile M, Scognamiglio G, Marra L, Aquino G, Botti C, Falcone MR, Malzone MG, Liguori G, Di Bonito M, Franco R, Ascierto PA, Botti G (2017) HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease. J Cell Physiol 232(12):3422–3432. https://doi.org/10.1002/jcp.25789

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Gao G, Liu S, Yu L, Yan D, Yao X, Sun W, Han D, Dong H (2017) Long noncoding RNA PVT1 as a novel diagnostic biomarker and therapeutic target for melanoma. Biomed Res Int 2017:7038579. https://doi.org/10.1155/2017/7038579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Gao J, Yu Y, Zhao Z, Pan Y (2018) Long non-coding RNA UCA1 targets miR-185-5p and regulates cell mobility by affecting epithelial-mesenchymal transition in melanoma via Wnt/beta-catenin signaling pathway. Gene 676:298–305. https://doi.org/10.1016/j.gene.2018.08.065

    Article  CAS  PubMed  Google Scholar 

  20. Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, Goding CR, Vance KW (2019) The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet 15(12):e1008501. https://doi.org/10.1371/journal.pgen.1008501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M, Khavari PA (2012) BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res 22(6):1006–1014. https://doi.org/10.1101/gr.140061.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, Radaelli E, Eyckerman S, Leonelli C, Vanderheyden K, Rogiers A, Hermans E, Baatsen P, Aerts S, Amant F, Van Aelst S, van den Oord J, de Strooper B, Davidson I, Lafontaine DL, Gevaert K, Vandesompele J, Mestdagh P, Marine JC (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531(7595):518–522. https://doi.org/10.1038/nature17161

    Article  CAS  PubMed  Google Scholar 

  23. Li P, Gao Y, Li J, Zhou Y, Yuan J, Guan H, Yao P (2018) LncRNA MEG3 repressed malignant melanoma progression via inactivating Wnt signaling pathway. J Cell Biochem 119(9):7498–7505. https://doi.org/10.1002/jcb.27061

    Article  CAS  PubMed  Google Scholar 

  24. Ni N, Song H, Wang X, Xu X, Jiang Y, Sun J (2017) Up-regulation of long non-coding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21. Biomed Pharmacother 96:1371–1379. https://doi.org/10.1016/j.biopha.2017.11.060

    Article  CAS  PubMed  Google Scholar 

  25. Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense non-coding RNA whose expression coclusters with ARF. Cancer Res 67(8):3963–3969. https://doi.org/10.1158/0008-5472.CAN-06-2004

    Article  CAS  PubMed  Google Scholar 

  26. Wu CF, Tan GH, Ma CC, Li L (2013) The non-coding RNA llme23 drives the malignant property of human melanoma cells. J Genet Genomics 40(4):179–188. https://doi.org/10.1016/j.jgg.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Yu X, Li Z (2015) Long non-coding RNA growth arrest-specific transcript 5 in tumor biology. Oncol Lett 10(4):1953–1958. https://doi.org/10.3892/ol.2015.3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao H, Xing G, Wang Y, Luo Z, Liu G, Meng H (2017) Long non-coding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429. Biosci Rep 37(3):BSR20170682. https://doi.org/10.1042/BSR20170682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccala V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P (2018) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32(9):1948–1957. https://doi.org/10.1038/s41375-018-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang Q, Zheng F, Liu Z, Wu J, Chai X, He C, Li L, Hann SS (2019) Novel reciprocal interaction of lncRNA HOTAIR and miR-214-3p contribute to the solamargine-inhibited PDPK1 gene expression in human lung cancer. J Cell Mol Med 23(11):7749–7761. https://doi.org/10.1111/jcmm.14649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, Perera RJ (2011) The melanoma-upregulated long non-coding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 71(11):3852–3862. https://doi.org/10.1158/0008-5472.CAN-10-4460

    Article  CAS  PubMed  Google Scholar 

  32. Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P (2020) Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 39(1):117. https://doi.org/10.1186/s13046-020-01622-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long non-coding RNAs in the human transcriptome. Nat Genet 47(3):199–208. https://doi.org/10.1038/ng.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Siena ADD, Placa JR, Araujo LF, de Barros II, Peronni K, Molfetta G, de Biagi CAO Jr, Espreafico EM, Sousa JF, Silva WA Jr (2019) Whole transcriptome analysis reveals correlation of long non-coding RNA ZEB1-AS1 with invasive profile in melanoma. Sci Rep 9(1):11350. https://doi.org/10.1038/s41598-019-47363-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hulstaert E, Brochez L, Volders PJ, Vandesompele J, Mestdagh P (2017) Long non-coding RNAs in cutaneous melanoma: clinical perspectives. Oncotarget 8(26):43470–43480. https://doi.org/10.18632/oncotarget.16478

    Article  PubMed  PubMed Central  Google Scholar 

  36. Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S (2020) The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 117:104558. https://doi.org/10.1016/j.yexmp.2020.104558

    Article  CAS  PubMed  Google Scholar 

  37. Tang L, Zhang W, Su B, Yu B (2013) Long non-coding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int 2013:251098. https://doi.org/10.1155/2013/251098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu J, Fu H, Wu Y, Zheng X (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56(10):876–885. https://doi.org/10.1007/s11427-013-4553-6

    Article  CAS  PubMed  Google Scholar 

  39. Mazar J, Zhao W, Khalil AM, Lee B, Shelley J, Govindarajan SS, Yamamoto F, Ratnam M, Aftab MN, Collins S, Finck BN, Han X, Mattick JS, Dinger ME, Perera RJ (2014) The functional characterization of long non-coding RNA SPRY4-IT1 in human melanoma cells. Oncotarget 5(19):8959–8969. https://doi.org/10.18632/oncotarget.1863

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang Q, Mao Z, Li S, Hu J, Zhu Y (2014) A non-radioactive method for small RNA detection by northern blotting. Rice 7(1):26. https://doi.org/10.1186/s12284-014-0026-1

    Article  PubMed  PubMed Central  Google Scholar 

  41. Luan W, Ding Y, Ma S, Ruan H, Wang J, Lu F (2019) Long non-coding RNA LINC00518 acts as a competing endogenous RNA to promote the metastasis of malignant melanoma via miR-204-5p/AP1S2 axis. Cell Death Dis 10(11):855. https://doi.org/10.1038/s41419-019-2090-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jorgensen S, Baker A, Moller S, Nielsen BS (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52(4):375–381. https://doi.org/10.1016/j.ymeth.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  43. Zhang A, Zhao JC, Kim J, Fong KW, Yang YA, Chakravarti D, Mo YY, Yu J (2015) LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate Cancer. Cell Rep 13(1):209–221. https://doi.org/10.1016/j.celrep.2015.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Da Sacco L, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13(1):97–114. https://doi.org/10.3390/ijms13010097

    Article  CAS  PubMed  Google Scholar 

  45. Olson NE (2006) The microarray data analysis process: from raw data to biological significance. NeuroRx 3(3):373–383. https://doi.org/10.1016/j.nurx.2006.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pinkney HR, Wright BM, Diermeier SD (2020) The lncRNA toolkit: databases and in silico tools for lncRNA analysis. Non-Coding RNA 6(4):49. https://doi.org/10.3390/ncrna6040049

    Article  CAS  PubMed Central  Google Scholar 

  47. Pirim H, Eksioglu B, Perkins A, Yuceer C (2012) Clustering of high throughput gene expression data. Comput Oper Res 39(12):3046–3061. https://doi.org/10.1016/j.cor.2012.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yotsukura S, duVerle D, Hancock T, Natsume-Kitatani Y, Mamitsuka H (2017) Computational recognition for long non-coding RNA (lncRNA): software and databases. Brief Bioinform 18(1):9–27. https://doi.org/10.1093/bib/bbv114

    Article  CAS  PubMed  Google Scholar 

  49. Anaya J (2016) OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science 2:e67

    Article  Google Scholar 

  50. Leucci E, Coe EA, Marine JC, Vance KW (2016) The emerging role of long non-coding RNAs in cutaneous melanoma. Pigment Cell Melanoma Res 29(6):619–626. https://doi.org/10.1111/pcmr.12537

    Article  CAS  PubMed  Google Scholar 

  51. Iwakiri J, Hamada M, Asai K (2016) Bioinformatics tools for lncRNA research. Biochim Biophys Acta 1859(1):23–30. https://doi.org/10.1016/j.bbagrm.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  52. Li JH, Liu S, Zheng LL, Wu J, Sun WJ, Wang ZL, Zhou H, Qu LH, Yang JH (2014) Discovery of protein-lncRNA interactions by integrating large-scale CLIP-Seq and RNA-Seq datasets. Front Bioeng Biotechnol 2:88. https://doi.org/10.3389/fbioe.2014.00088

    Article  PubMed  Google Scholar 

  53. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L, Li X (2016) Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44(D1):D980–D985. https://doi.org/10.1093/nar/gkv1094

    Article  CAS  PubMed  Google Scholar 

  54. Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R, Leopold V, Tay Y, Provero P, Zecchina R, Pandolfi PP (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci U S A 110(18):7154–7159. https://doi.org/10.1073/pnas.1222509110

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cohen C, Zavala-Pompa A, Sequeira JH, Shoji M, Sexton DG, Cotsonis G, Cerimele F, Govindarajan B, Macaron N, Arbiser JL (2002) Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin Cancer Res 8(12):3728–3733

    CAS  PubMed  Google Scholar 

  56. Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P (2007) Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res 13(16):4934–4942. https://doi.org/10.1158/1078-0432.CCR-07-0665

    Article  CAS  PubMed  Google Scholar 

  57. Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take Centre stage. Nat Rev Mol Cell Biol 5(11):875–885. https://doi.org/10.1038/nrm1498

    Article  CAS  PubMed  Google Scholar 

  58. Hombach S, Kretz M (2013) The non-coding skin: exploring the roles of long non-coding RNAs in epidermal homeostasis and disease. BioEssays 35(12):1093–1100. https://doi.org/10.1002/bies.201300068

    Article  CAS  PubMed  Google Scholar 

  59. Cai B, Zheng Y, Ma S, Xing Q, Wang X, Yang B, Yin G, Guan F (2017) BANCR contributes to the growth and invasion of melanoma by functioning as a competing endogenous RNA to upregulate Notch2 expression by sponging miR204. Int J Oncol 51(6):1941–1951. https://doi.org/10.3892/ijo.2017.4173

    Article  CAS  PubMed  Google Scholar 

  60. Wu J, Zhou MY, Yu XP, Wu Y, Xie PL (2019) Long non-coding RNA OR3A4 promotes the migration and invasion of melanoma through the PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci 23(16):6991–6996. https://doi.org/10.26355/eurrev_201908_18739

    Article  CAS  PubMed  Google Scholar 

  61. Luan W, Li R, Liu L, Ni X, Shi Y, Xia Y, Wang J, Lu F, Xu B (2017) Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget 8(49):85401–85414. https://doi.org/10.18632/oncotarget.19910

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shang Z, Feng H, Cui L, Wang W, Fu H (2018) Propofol promotes apoptosis and suppresses the HOTAIR-mediated mTOR/p70S6K signaling pathway in melanoma cells. Oncol Lett 15(1):630–634. https://doi.org/10.3892/ol.2017.7297

    Article  CAS  PubMed  Google Scholar 

  63. Liao Z, Zhao J, Yang Y (2018) Downregulation of lncRNA H19 inhibits the migration and invasion of melanoma cells by inactivating the NFkappaB and PI3K/Akt signaling pathways. Mol Med Rep 17(5):7313–7318. https://doi.org/10.3892/mmr.2018.8782

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Chen J, Jing G, Dong D (2020) LncRNA HOTAIR promotes proliferation of malignant melanoma cells through NF-varkappaB pathway. Iran J Public Health 49(10):1931–1939. https://doi.org/10.18502/ijph.v49i10.4696

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang Y, Zhang Z, Wu Z, Lin W, Yu M (2019) Downregulation of the expression of the lncRNA MIAT inhibits melanoma migration and invasion through the PI3K/AKT signaling pathway. Cancer Biomark 24(2):203–211. https://doi.org/10.3233/CBM-181869

    Article  CAS  PubMed  Google Scholar 

  66. Pan B, Lin X, Zhang L, Hong W, Zhang Y (2019) Long non-coding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Melanoma Res 29(3):254–262. https://doi.org/10.1097/CMR.0000000000000560

    Article  CAS  PubMed  Google Scholar 

  67. Peng Q, Liu L, Pei H, Zhang J, Chen M, Zhai X (2020) A LHFPL3-AS1/miR-580-3p/STAT3 feedback loop promotes the malignancy in melanoma via activation of JAK2/STAT3 signaling. Mol Cancer Res 18(11):1724–1734. https://doi.org/10.1158/1541-7786.MCR-19-1046

    Article  CAS  PubMed  Google Scholar 

  68. Chen L, Yang H, Xiao Y, Tang X, Li Y, Han Q, Fu J, Yang Y, Zhu Y (2016) Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells. Int J Oncol 48(4):1509–1518. https://doi.org/10.3892/ijo.2016.3377

    Article  CAS  PubMed  Google Scholar 

  69. Bao S, Zhao H, Yuan J, Fan D, Zhang Z, Su J, Zhou M (2020) Computational identification of mutator-derived lncRNA signatures of genome instability for improving the clinical outcome of cancers: a case study in breast cancer. Brief Bioinform 21(5):1742–1755. https://doi.org/10.1093/bib/bbz118

    Article  PubMed  Google Scholar 

  70. Hauptman N, Glavac D (2013) Long non-coding RNA in cancer. Int J Mol Sci 14(3):4655–4669. https://doi.org/10.3390/ijms14034655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salviano-Silva A, Lobo-Alves SC, Almeida RC, Malheiros D, Petzl-Erler ML (2018) Besides pathology: long non-coding RNA in cell and tissue homeostasis. Non-coding RNA 4(1):3. https://doi.org/10.3390/ncrna4010003

    Article  CAS  PubMed Central  Google Scholar 

  72. Zhou M, Zhao H, Wang Z, Cheng L, Yang L, Shi H, Yang H, Sun J (2015) Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res 34:102. https://doi.org/10.1186/s13046-015-0219-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou M, Zhao H, Xu W, Bao S, Cheng L, Sun J (2017) Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Mol Cancer 16(1):16. https://doi.org/10.1186/s12943-017-0580-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, Consortium F, Group RGER, Genome Science G (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563. https://doi.org/10.1126/science.1112014

    Article  CAS  PubMed  Google Scholar 

  75. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S (2016) MALAT1 long non-coding RNA in cancer. Biochim Biophys Acta 1859(1):192–199. https://doi.org/10.1016/j.bbagrm.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  76. Virginie V, Delphine F (2018) Non-coding RNAs in cutaneous melanoma development, progression and dissemination. OBM Genetics 2(2):20

    Google Scholar 

  77. Sun Y, Cheng H, Wang G, Yu G, Zhang D, Wang Y, Fan W, Yang W (2017) Deregulation of miR-183 promotes melanoma development via lncRNA MALAT1 regulation and ITGB1 signal activation. Oncotarget 8(2):3509–3518. https://doi.org/10.18632/oncotarget.13862

    Article  PubMed  Google Scholar 

  78. Luan W, Li L, Shi Y, Bu X, Xia Y, Wang J, Djangmah HS, Liu X, You Y, Xu B (2016) Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget 7(39):63901–63912. https://doi.org/10.18632/oncotarget.11564

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. https://doi.org/10.1038/nature08975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Geng YJ, Xie SL, Li Q, Ma J, Wang GY (2011) Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 39(6):2119–2128. https://doi.org/10.1177/147323001103900608

    Article  CAS  PubMed  Google Scholar 

  81. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, Kim S, Safe S (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32(13):1616–1625. https://doi.org/10.1038/onc.2012.193

    Article  CAS  PubMed  Google Scholar 

  82. Nie Y, Liu X, Qu S, Song E, Zou H, Gong C (2013) Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci 104(4):458–464. https://doi.org/10.1111/cas.12092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Svoboda M, Slyskova J, Schneiderova M, Makovicky P, Bielik L, Levy M, Lipska L, Hemmelova B, Kala Z, Protivankova M, Vycital O, Liska V, Schwarzova L, Vodickova L, Vodicka P (2014) HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis 35(7):1510–1515. https://doi.org/10.1093/carcin/bgu055

    Article  CAS  PubMed  Google Scholar 

  84. Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L, Sha N (2014) Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 9(6):e100893. https://doi.org/10.1371/journal.pone.0100893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang Y, Yang H, Yi Z, Yang L, Ni Y, Zhou M, Xiong G, Agbrana Y, Zhao L, Yang Z, Zhang Q, Kuang Y, Zhu Y (2020) LncRNA BANCR facilitates melanoma cells growth, migration and invasion by inhibiting miR-206 and miR-571 to induce G6PD expression. Res Sq. https://doi.org/10.21203/rs.3.rs-31582/v1.

    Google Scholar 

  86. Xie H, Rachakonda PS, Heidenreich B, Nagore E, Sucker A, Hemminki K, Schadendorf D, Kumar R (2016) Mapping of deletion breakpoints at the CDKN2A locus in melanoma: detection of MTAP-ANRIL fusion transcripts. Oncotarget 7(13):16490–16504. https://doi.org/10.18632/oncotarget.7503

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286(19):16606–16614. https://doi.org/10.1074/jbc.M111.227611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu S, Wang H, Pan H, Shi Y, Li T, Ge S, Jia R, Zhang H, Fan X (2016) ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett 381(1):41–48. https://doi.org/10.1016/j.canlet.2016.07.024

    Article  CAS  PubMed  Google Scholar 

  89. Zehavi L, Schayek H, Jacob-Hirsch J, Sidi Y, Leibowitz-Amit R, Avni D (2015) MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP 3K7 in malignant melanoma. Mol Cancer 14:68. https://doi.org/10.1186/s12943-015-0338-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Amos CI, Wang LE, Lee JE, Gershenwald JE, Chen WV, Fang S, Kosoy R, Zhang M, Qureshi AA, Vattathil S, Schacherer CW, Gardner JM, Wang Y, Bishop DT, Barrett JH, Geno MELI, MacGregor S, Hayward NK, Martin NG, Duffy DL, Investigators QM, Mann GJ, Cust A, Hopper J, Investigators A, Brown KM, Grimm EA, Xu Y, Han Y, Jing K, McHugh C, Laurie CC, Doheny KF, Pugh EW, Seldin MF, Han J, Wei Q (2011) Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 20(24):5012–5023. https://doi.org/10.1093/hmg/ddr415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baker MJ, Goldstein AM, Gordon PL, Harbaugh KS, Mackley HB, Glantz MJ, Drabick JJ (2016) An interstitial deletion within 9p21.3 and extending beyond CDKN2A predisposes to melanoma, neural system tumours and possible haematological malignancies. J Med Genet 53(11):721–727. https://doi.org/10.1136/jmedgenet-2015-103446

    Article  CAS  PubMed  Google Scholar 

  92. Maccioni L, Rachakonda PS, Bermejo JL, Planelles D, Requena C, Hemminki K, Nagore E, Kumar R (2013) Variants at the 9p21 locus and melanoma risk. BMC Cancer 13:325. https://doi.org/10.1186/1471-2407-13-325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wei Y, Sun Q, Zhao L, Wu J, Chen X, Wang Y, Zang W, Zhao G (2016) LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma. Med Oncol 33(8):88. https://doi.org/10.1007/s12032-016-0804-2

    Article  CAS  PubMed  Google Scholar 

  94. Han C, Tang F, Chen J, Xu D, Li X, Xu Y, Wang S, Zhou J (2019) Knockdown of lncRNA-UCA1 inhibits the proliferation and migration of melanoma cells through modulating the miR-28-5p/HOXB3 axis. Exp Ther Med 17(5):4294–4302. https://doi.org/10.3892/etm.2019.7421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu X, Zheng H, Tse G, Chan MT, Wu WK (2018) Long non-coding RNAs in melanoma. Cell Prolif 51(4):e12457. https://doi.org/10.1111/cpr.12457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tang L, Liang Y, Xie H, Yang X, Zheng G (2020) Long non-coding RNAs in cutaneous biology and proliferative skin diseases: advances and perspectives. Cell Prolif 53(1):e12698. https://doi.org/10.1111/cpr.12698

    Article  PubMed  Google Scholar 

  97. Aubuchon MM, Bolt LJ, Janssen-Heijnen ML, Verleisdonk-Bolhaar ST, van Marion A, van Berlo CL (2017) Epidemiology, management and survival outcomes of primary cutaneous melanoma: a ten-year overview. Acta Chir Belg 117(1):29–35. https://doi.org/10.1080/00015458.2016.1242214

    Article  CAS  PubMed  Google Scholar 

  98. Schmidt K, Joyce CE, Buquicchio F, Brown A, Ritz J, Distel RJ, Yoon CH, Novina CD (2016) The lncRNA SLNCR1 mediates melanoma invasion through a conserved SRA1-like region. Cell Rep 15(9):2025–2037. https://doi.org/10.1016/j.celrep.2016.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu T, Shen SK, Xiong JG, Xu Y, Zhang HQ, Liu HJ, Lu ZG (2016) Clinical significance of long non-coding RNA SPRY4-IT1 in melanoma patients. FEBS Open Bio 6(2):147–154. https://doi.org/10.1002/2211-5463.12030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao W, Mazar J, Lee B, Sawada J, Li JL, Shelley J, Govindarajan S, Towler D, Mattick JS, Komatsu M, Dinger ME, Perera RJ (2016) The long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes. J Invest Dermatol 136(4):819–828. https://doi.org/10.1016/j.jid.2016.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Song W, Wang K, Zhang RJ, Dai QX, Zou SB (2016) Long non-coding RNA GAS5 can predict metastasis and poor prognosis: a meta-analysis. Minerva Med 107(1):70–76

    PubMed  Google Scholar 

  102. Bian D, Shi W, Shao Y, Li P, Song G (2017) Long non-coding RNA GAS5 inhibits tumorigenesis via miR-137 in melanoma. Am J Transl Res 9(3):1509–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Shain AH, Bastian BC (2016) From melanocytes to melanomas. Nat Rev Cancer 16(6):345–358. https://doi.org/10.1038/nrc.2016.37

    Article  CAS  PubMed  Google Scholar 

  104. Aftab MN, Dinger ME, Perera RJ (2014) The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys 563:60–70. https://doi.org/10.1016/j.abb.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  105. Smedley D, Sidhar S, Birdsall S, Bennett D, Herlyn M, Cooper C, Shipley J (2000) Characterization of chromosome 1 abnormalities in malignant melanomas. Genes Chromosomes Cancer 28(1):121–125. https://doi.org/10.1002/(sici)1098-2264(200005)28:1

    Article  CAS  PubMed  Google Scholar 

  106. Thorenoor N, Faltejskova-Vychytilova P, Hombach S, Mlcochova J, Kretz M, Svoboda M, Slaby O (2016) Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 7(1):622–637. https://doi.org/10.18632/oncotarget.5807

    Article  PubMed  Google Scholar 

  107. Ichigozaki Y, Fukushima S, Jinnin M, Miyashita A, Nakahara S, Tokuzumi A, Yamashita J, Kajihara I, Aoi J, Masuguchi S, Zhongzhi W, Ihn H (2016) Serum long non-coding RNA, snoRNA host gene 5 level as a new tumor marker of malignant melanoma. Exp Dermatol 25(1):67–69. https://doi.org/10.1111/exd.12868

    Article  PubMed  Google Scholar 

  108. Guo L, Yao L, Jiang Y (2016) A novel integrative approach to identify lncRNAs associated with the survival of melanoma patients. Gene 585(2):216–220. https://doi.org/10.1016/j.gene.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  109. Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N, Donovan NC, Kiyohara E, Hsu S, Nelson N, Izraely S, Sagi-Assif O, Witz IP, Ma XJ, Luo Y, Hoon DSB (2015) The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. J Invest Dermatol 135(10):2464–2474. https://doi.org/10.1038/jid.2015.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tian Y, Zhang X, Hao Y, Fang Z, He Y (2014) Potential roles of abnormally expressed long non-coding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res 24(4):335–341. https://doi.org/10.1097/CMR.0000000000000080

    Article  CAS  PubMed  Google Scholar 

  111. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574. https://doi.org/10.1016/s0092-8674(02)00908-x

    Article  CAS  PubMed  Google Scholar 

  112. Buchholz F, Kittler R, Slabicki M, Theis M (2006) Enzymatically prepared RNAi libraries. Nat Methods 3(9):696–700. https://doi.org/10.1038/nmeth912

    Article  CAS  PubMed  Google Scholar 

  113. Li F, Li X, Qiao L, Liu W, Xu C, Wang X (2019) MALAT1 regulates miR-34a expression in melanoma cells. Cell Death Dis 10(6):389. https://doi.org/10.1038/s41419-019-1620-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun L, Sun P, Zhou QY, Gao X, Han Q (2016) Long non-coding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing of miR-140. Am J Transl Res 8(9):3939–3946

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Walder RY, Walder JA (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A 85(14):5011–5015. https://doi.org/10.1073/pnas.85.14.5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75(1):280–284. https://doi.org/10.1073/pnas.75.1.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen L, Yang H, Xiao Y, Tang X, Li Y, Han Q, Fu J, Yang Y, Zhu Y (2016) LncRNA GAS5 is a critical regulator of metastasis phenotype of melanoma cells and inhibits tumor growth in vivo. Onco Targets Ther 9:4075–4087. https://doi.org/10.2147/OTT.S98203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maverakis E, Cornelius LA, Bowen GM, Phan T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, Sultani H, Wilken R, Martinez SR, Patel F (2015) Metastatic melanoma - a review of current and future treatment options. Acta Derm Venereol 95(5):516–524. https://doi.org/10.2340/00015555-2035

    Article  CAS  PubMed  Google Scholar 

  119. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326):973–977. https://doi.org/10.1038/nature09626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526. https://doi.org/10.1056/NEJMoa1104621

    Article  CAS  PubMed  Google Scholar 

  121. Ji Z, Erin Chen Y, Kumar R, Taylor M, Jenny Njauw CN, Miao B, Frederick DT, Wargo JA, Flaherty KT, Jonsson G, Tsao H (2015) MITF modulates therapeutic resistance through EGFR signaling. J Invest Dermatol 135(7):1863–1872. https://doi.org/10.1038/jid.2015.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, Place CS, Taylor-Weiner A, Whittaker S, Kryukov GV, Hodis E, Rosenberg M, McKenna A, Cibulskis K, Farlow D, Zimmer L, Hillen U, Gutzmer R, Goldinger SM, Ugurel S, Gogas HJ, Egberts F, Berking C, Trefzer U, Loquai C, Weide B, Hassel JC, Gabriel SB, Carter SL, Getz G, Garraway LA, Schadendorf D, Dermatologic Cooperative Oncology Group of G (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4(1):94–109. https://doi.org/10.1158/2159-8290.CD-13-0617

    Article  CAS  PubMed  Google Scholar 

  123. Zheng M, Bocangel D, Ramesh R, Ekmekcioglu S, Poindexter N, Grimm EA, Chada S (2008) Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells. Mol Cancer Ther 7(12):3842–3851. https://doi.org/10.1158/1535-7163.MCT-08-0516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sanlorenzo M, Vujic I, Esteve-Puig R, Lai K, Vujic M, Lin K, Posch C, Dimon M, Moy A, Zekhtser M, Johnston K, Gho D, Ho W, Gajjala A, Oses Prieto J, Burlingame A, Daud A, Rappersberger K, Ortiz-Urda S (2018) The lincRNA MIRAT binds to IQGAP1 and modulates the MAPK pathway in NRAS mutant melanoma. Sci Rep 8(1):10902. https://doi.org/10.1038/s41598-018-27643-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, Gootenberg JS, Sanjana NE, Wright JB, Fulco CP, Tseng YY, Yoon CH, Boehm JS, Lander ES, Zhang F (2017) Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548(7667):343–346. https://doi.org/10.1038/nature23451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cao K, Yan L, Dong H, Mengqin X, Liang X, Yuxing Z (2020) Long non-coding RNA LINC00518 induces Radioresistance by regulating glycolysis through an miR-33a-3p/HIF-1α negative feedback loop in melanoma. Cell Death Disease 12:245

    Google Scholar 

  127. Poliseno L, Haimovic A, Christos PJ, YSDMEC V, Shapiro R, Pavlick A, Berman RS, Darvishian F, Osman I (2011) Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol 131(12):2497–2500. https://doi.org/10.1038/jid.2011.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported in part from Indian Council of Medical Research, New Delhi (5/13/51/2020/NCD-III) in the SCG’s laboratory. The work was also supported by Nitte Research Grant (NU/DR/NUFR1/NUCSER/2019-20/01) to A Sharma. The support from Nitte Research (N/RG/NUSR2/NUCSER/2020/16 and N/RG/NUSR2/NUCSER/2020/14) to SK is thankfully acknowledged. VR is supported from Indian Council of Medical Research, New Delhi in the form of Senior Research Fellowship (3/2/2/43/2018/Online Onco Fship/NCD-III).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash Chandra Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaouhan, H.S., Rai, V., Kini, S., Shekher, A., Sharma, A., Gupta, S.C. (2021). Potential of Long Non-coding RNAs in the Diagnosis and Therapy of Melanoma Skin Cancer. In: Dwivedi, A., Tripathi, A., Ray, R.S., Singh, A.K. (eds) Skin Cancer: Pathogenesis and Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-16-0364-8_13

Download citation

Publish with us

Policies and ethics