Skip to main content

Use of Artificial Intelligence in Research and Clinical Decision Making for Combating Mycobacterial Diseases

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning in Healthcare

Abstract

Tuberculosis (TB) and leprosy (caused by mycobacterial pathogens) are two age-old infections, which we are facing even today. India is a major contributor to the global burden of leprosy and tuberculosis, which adversely affects the diverse communities as well as having a prevalence in different parts of the country. Timely diagnostics and effective treatment are very challenging, and the emergence of drug resistance has further complicated the management of these mycobacterial diseases. Various lineages of these mycobacterial pathogens show varying phenotypes in terms of clinical presentations and treatment outcomes. Altogether these factors make it further difficult to understand the full genetic diversity and pathogenicity of these pathogens using the conventional genomic and proteomic approaches. However, thanks to the recent technological advances in the genomics and proteomics field, many of these constraints have been suitably addressed. While it is relatively simpler to produce the omics data in a high-throughput manner, the bottleneck now is the pace to assimilate this large data into some useful information to reach a relevant, meaningful conclusion in a timely manner to assist the clinician in making a judgment.

In India, genetic diversity of different strains has been widely studied using approaches based on Next-generation sequencing (NGS), metagenomics, spoligotyping, and PCR. But there are still gaps in predicting phenotypes accurately from genotypic data, in particular for certain drugs. Recently, Machine learning (ML) methods were successfully used to develop predictive classification models and to identify compounds based on their biological activities. Artificial Intelligence- (AI) based ML learns from known data characteristics and makes predictions. Machine learning approaches can find statistical dependencies in the data and also take into account the non-linear and feature-interaction effects. In this way, new knowledge can be unleashed and data has been proven to be useful that can provide clinically actionable recommendations and high priority features like mutation/variant/polymorphism profile and its association with the drug as well as drug resistance profile, genotype information regarding clustering and molecular epidemiology of mycobacteria. Moreover, the data utilized by the model for prediction can also be implied in rapid diagnostics and transmission dynamics studies. In this chapter, we gathered the current information about the use of Genome-wide Association Study (GWAS) and NGS in mycobacterial disease and a machine learning literature supporting applications for identification and antimicrobial susceptibility testing in mycobacteria. We have attempted to provide a comprehensive introduction about the technological advancements in high throughput data and explain how NGS with ML can be used in clinical decision-making, genomics, proteomics, docking, simulations, drug screening, and drug-repurposing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advani J et al (2019) Whole genome sequencing of Mycobacterium tuberculosis clinical isolates from India reveals genetic heterogeneity and region-specific variations that might affect drug susceptibility. Front Microbiol 10:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Akama T et al (2009) Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 191(10):3321–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ALEnezi NSA, Method A (2019) Of skin disease detection using image processing and machine learning. Procedia Comput Sci 163:85–92

    Article  Google Scholar 

  • Alimadadi A et al (2020) Artificial intelligence and machine learning to fight COVID-19. American Physiological Society, Bethesda, MD

    Book  Google Scholar 

  • Allam Z (2020) The triple B: big data, biotechnology, and biomimicry. In: Biotechnology and future cities. Springer, Cham, pp 17–33

    Chapter  Google Scholar 

  • Arenas NE et al (2011) Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: possible misannotation of this tubercle bacilli-hemolysin. BMC Struct Biol 11(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azar AT et al (2013) Linguistic hedges fuzzy feature selection for differential diagnosis of Erythemato-squamous diseases. In: Soft computing applications. Springer, Berlin, pp 487–500

    Chapter  Google Scholar 

  • Bacher U et al (2018) Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J 8(11):1–10

    Article  Google Scholar 

  • Bapat PM, Wangikar PP (2004) Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Biotechnol Bioeng 86(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Baweja HS, Parhar T (2016) Leprosy lesion recognition using convolutional neural networks. In: 2016 international conference on machine learning and cybernetics (ICMLC). IEEE

    Google Scholar 

  • Belone AdFF et al (2015) Genome-wide screening of mRNA expression in leprosy patients. Front Genet 6:334

    Article  PubMed Central  CAS  Google Scholar 

  • Benjak A et al (2018) Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun 9(1):352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhandari J, Awais M, Gupta V (2020) Leprosy (Hansen Disease). In: StatPearls [internet]. StatPearls, Treasure Island, FL

    Google Scholar 

  • Bleharski JR et al (2003) Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science 301(5639):1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Burns T et al (2008) Rook’s textbook of dermatology. Wiley, Hoboken, NJ

    Google Scholar 

  • Buyuksimsek M et al (2019) Results of liquid biopsy studies by next generation sequencing in patients with advanced stage non-small cell lung cancer: single center experience from Turkey. Balkan J Med Genet 22(2):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho DM et al (2018) Next-generation machine learning for biological networks. Cell 173(7):1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty S et al (2019) Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis. Tuberculosis 116:37–43

    Article  CAS  PubMed  Google Scholar 

  • Chance MR et al (2004) High-throughput computational and experimental techniques in structural genomics. Genome Res 14(10b):2145–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee A et al (2017) Whole genome sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: a potential tool for determining drug-resistance and strain lineage. Tuberculosis 107:63–72

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Poonawala H, Jain Y (2018) Drug-resistant tuberculosis: is India ready for the challenge? BMJ Glob Health 3(4):e000971

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen IY, Szolovits P, Ghassemi M (2019) Can AI help reduce disparities in general medical and mental health care? AMA J Ethics 21(2):167–179

    Article  Google Scholar 

  • Chetty S et al (2017) Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 27(3):370–386

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Supply P, Honore N (2001) Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr Rev 72(4):449–461

    CAS  PubMed  Google Scholar 

  • da Silva YED et al (2018) Application of clustering technique with Kohonen self-organizing maps for the epidemiological analysis of leprosy. In: Proceedings of SAI intelligent systems conference. Springer, Berlin

    Google Scholar 

  • Dagiasis AP et al (2014) A high performance biomarker detection Method for exhaled breath mass spectrometry data. In: Topics in nonparametric statistics. Springer, Cham, pp 207–216

    Chapter  Google Scholar 

  • de Souza GA et al (2009) Validating divergent ORF annotation of the Mycobacterium leprae genome through a full translation data set and peptide identification by tandem mass spectrometry. Proteomics 9(12):3233–3243

    Article  PubMed  CAS  Google Scholar 

  • Deepika K, Seema S (2016) Predictive analytics to prevent and control chronic diseases. In: 2016 2nd international conference on applied and theoretical computing and communication technology (iCATccT). IEEE

    Google Scholar 

  • Denton JF et al (2014) Extensive error in the number of genes inferred from draft genome assemblies. PLoS Comput Biol 10(12):e1003998

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Resta C et al (2018) Next-generation sequencing approach for the diagnosis of human diseases: open challenges and new opportunities. Ejifcc 29(1):4

    PubMed  PubMed Central  Google Scholar 

  • Dias R, Torkamani A (2019) Artificial intelligence in clinical and genomic diagnostics. Genome Med 11(1):1–12

    Article  CAS  Google Scholar 

  • Djaout K et al (2016) Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis. Sci Rep 6(1):1–11

    Article  CAS  Google Scholar 

  • Dorhoi A et al (2013) MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123(11):4836–4848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekins S et al (2014) Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis. Tuberculosis 94(2):162–169

    Article  CAS  PubMed  Google Scholar 

  • Eloit M (2014) The diagnosis of infectious diseases by whole genome next generation sequencing: a new era is opening. Front Cell Infect Microbiol 4:25

    PubMed  PubMed Central  Google Scholar 

  • Esfandyarpour R et al (2013) Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device. Nanotechnology 24(46):465301

    Article  PubMed  CAS  Google Scholar 

  • Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauci AS, Lane HC, Redfield RR (2020) Covid-19—navigating the uncharted. N Engl J Med 382(13):1268–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming N (2018) How artificial intelligence is changing drug discovery. Nature 557(7706):S55–S55

    Article  CAS  PubMed  Google Scholar 

  • Frankish K, Ramsey WM (2014) The Cambridge handbook of artificial intelligence. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gama RS et al (2019) A novel integrated molecular and serological analysis method to predict new cases of leprosy amongst household contacts. PLoS Negl Trop Dis 13(6):e0007400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gimeno A et al (2019) The light and dark sides of virtual screening: what is there to know? Int J Mol Sci 20(6):1375

    Article  CAS  PubMed Central  Google Scholar 

  • Grossman SR et al (2013) Identifying recent adaptations in large-scale genomic data. Cell 152(4):703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigó R et al (2006) EGASP: the human ENCODE genome annotation assessment project. Genome Biol 7(S1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Gupta U (2014) Next generation sequencing and its applications. In: Animal biotechnology. Elsevier, Amsterdam, pp 345–367

    Chapter  Google Scholar 

  • Harrow J et al (2009) Identifying protein-coding genes in genomic sequences. Genome Biol 10(1):201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hay R et al (2006) Skin diseases. In: Disease control priorities in developing countries, 2nd edn. The International Bank for Reconstruction and Development/The World Bank, Washington, DC

    Google Scholar 

  • Hodgson DR, Wellings R, Harbron C (2012) Practical perspectives of personalized healthcare in oncology. New Biotechnol 29(6):656–664

    Article  CAS  Google Scholar 

  • Hodkinson BP, Grice EA (2015) Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care 4(1):50–58

    Article  Google Scholar 

  • Hu X et al (2020) LncRNA and predictive model to improve the diagnosis of clinically diagnosed pulmonary tuberculosis. J Clin Microbiol 58:e01973-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioerger TR et al (2013) Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 8(9):e75245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MM et al (2017) Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics 44(1):21–37

    Article  PubMed  Google Scholar 

  • Israel21c (2020) Covid spit test. https://www.israel21c.org/israeli-1-second-covid-spit-test-shown-95-accurate-so-far/

  • Jackson N, Czaplewski L, Piddock LJ (2018) Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother 73(6):1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Jamal S et al (2020) Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis. Sci Rep 10(1):1–16

    CAS  Google Scholar 

  • Jiang H, He K (2020) Statistics in the Genomic Era. Multidisciplinary Digital Publishing Institute, Basel

    Book  Google Scholar 

  • Joshi RS et al (2013) Resistome analysis of Mycobacterium tuberculosis: identification of aminoglycoside 2'-Nacetyltransferase (AAC) as co-target for drug desigining. Bioinformation 9(4):174

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalo D et al (2015) Pattern of drug resistance of Mycobacterium tuberculosis clinical isolates to first-line antituberculosis drugs in pulmonary cases. Lung India 32(4):339

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim K et al (2020) Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat Commun 11(1):1–11

    CAS  Google Scholar 

  • Kinnings SL et al (2011) A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51(2):408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchaki S et al (2019) Application of machine learning techniques to tuberculosis drug resistance analysis. Bioinformatics 35(13):2276–2282

    Article  CAS  PubMed  Google Scholar 

  • Koumakis L (2020) Deep learning models in genomics; are we there yet? Comput Struct Biotechnol J 18:1466–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Abubakar I (2015) Clinical implications of the global multidrug-resistant tuberculosis epidemic. Clin Med 15(Sup 6):s37–s42

    Article  Google Scholar 

  • Kwan PKW et al (2020) Gene expression responses to anti-tuberculous drugs in a whole blood model. BMC Microbiol 20:1–9

    Article  CAS  Google Scholar 

  • Lane T et al (2018) Comparing and validating machine learning models for mycobacterium tuberculosis drug discovery. Mol Pharm 15(10):4346–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavania M et al (2015) Genotyping of Mycobacterium leprae strains from a region of high endemic leprosy prevalence in India. Infect Genet Evol 36:256–261

    Article  PubMed  Google Scholar 

  • Lavania M et al (2018) Molecular detection of multidrug-resistant Mycobacterium leprae from Indian leprosy patients. J Glob Antimicrob Resist 12:214–219

    Article  PubMed  Google Scholar 

  • Lebrigand K et al (2020) High throughput error corrected Nanopore single cell transcriptome sequencing. Nat Commun 11(1):1–8

    Article  CAS  Google Scholar 

  • Li L et al (2020) Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 296(2):200905

    Article  Google Scholar 

  • Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C et al (2013) Applications of machine learning in genomics and systems biology. Comput Math Methods Med 2013:587492

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2020a) A panel of circRNAs in the serum serves as biomarkers for mycobacterium tuberculosis infection. Front Microbiol 11:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2020b) A deep learning system for differential diagnosis of skin diseases. Nat Med 26:900–908

    Article  CAS  PubMed  Google Scholar 

  • Lohiya A et al (2020) Prevalence and patterns of drug resistant pulmonary tuberculosis in India—a systematic review and meta-analysis. J Glob Antimicrob Resist 22:308–316

    Article  PubMed  Google Scholar 

  • Lumaka A et al (2017) Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator. Clin Genet 92(2):166–171

    Article  CAS  PubMed  Google Scholar 

  • Lv W et al (2020) Discovery and validation of biomarkers for Zhongning goji berries using liquid chromatography mass spectrometry. J Chromatogr B 1142:122037

    Article  CAS  Google Scholar 

  • Lyko K, Nitzschke M, Ngomo A-CN (2016) Big data acquisition. In: New horizons for a data-driven economy. Springer, Cham, pp 39–61

    Chapter  Google Scholar 

  • Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 24(3):773–780

    Article  PubMed  Google Scholar 

  • Manson AL et al (2017) Mycobacterium tuberculosis whole genome sequences from southern India suggest novel resistance mechanisms and the need for region-specific diagnostics. Clin Infect Dis 64(11):1494–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoni C et al (2018) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 19(2):286–302

    Article  CAS  PubMed  Google Scholar 

  • Marques MAM et al (2008) Deciphering the proteomic profile of Mycobacterium leprae cell envelope. Proteomics 8(12):2477–2491

    Article  CAS  PubMed  Google Scholar 

  • Martin AR et al (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51(4):584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka M (2010) Drug resistance in leprosy. Jpn J Infect Dis 63(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M et al (2007) The frequency of drug resistance mutations in Mycobacterium leprae isolates in untreated and relapsed leprosy patients from Myanmar, Indonesia and the Philippines. Lepr Rev 78(4):343–352

    Article  PubMed  Google Scholar 

  • McNerney R, Zignol M, Clark TG (2018) Use of whole genome sequencing in surveillance of drug resistant tuberculosis. Expert Rev Anti-Infect Ther 16(5):433–442

    Article  CAS  PubMed  Google Scholar 

  • Mehaffy C et al (2018) Biochemical characterization of isoniazid-resistant Mycobacterium tuberculosis: can the analysis of clonal strains reveal novel targetable pathways? Mol Cell Proteomics 17(9):1685–1701

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta MD, Liu PT (2014) microRNAs in mycobacterial disease: friend or foe? Front Genet 5:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mertz L (2020) AI-driven COVID-19 tools to interpret, quantify lung images. IEEE Pulse 11(4):2–7

    Article  PubMed  Google Scholar 

  • Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131(2):129–133

    Article  PubMed  Google Scholar 

  • Mishra R et al (2020) Potential role of adjuvant drugs on efficacy of first line oral antitubercular therapy: drug repurposing. Tuberculosis 120:101902

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S et al (2020) Application of artificial intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr Clin Res Rev 14(5):1027–1031

    Article  Google Scholar 

  • Mokrousov I et al (2016) Next-generation sequencing of Mycobacterium tuberculosis. Emerg Infect Dis 22(6):1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monot M et al (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41(12):1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Munir K et al (2019) Cancer diagnosis using deep learning: a bibliographic review. Cancers 11(9):1235

    Article  PubMed Central  Google Scholar 

  • Nagpal P et al (2020) Long-range replica exchange molecular dynamics guided drug repurposing against tyrosine kinase PtkA of Mycobacterium tuberculosis. Sci Rep 10(1):1–11

    Article  CAS  Google Scholar 

  • Nobre T et al (2016) Misannotation awareness: a tale of two gene-groups. Front Plant Sci 7:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Novartis (2020) AI-powered diagnostic tool to aid in the early detection of leprosy. https://www.novartisfoundation.org/news/ai-powered-diagnostic-tool-aid-early-detection-leprosy

  • Oliveira AL (2019) Biotechnology, big data and artificial intelligence. Biotechnol J 14(8):1800613

    Article  CAS  Google Scholar 

  • Oprea R (2020) AI versus the human brain. Brain Minds. https://brandminds.live/

  • Oprea T, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14(4):759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S-Y et al (2014) Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med 2014:525340

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoulou E et al (2019) Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS One 14(12):e0226853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paranjpe MD, Taubes A, Sirota M (2019) Insights into computational drug repurposing for neurodegenerative disease. Trends Pharmacol Sci 40(8):565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkash O, Singh B (2012) Advances in proteomics of Mycobacterium leprae. Scand J Immunol 75(4):369–378

    Article  CAS  PubMed  Google Scholar 

  • Parvathaneni V et al (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24(10):2076–2085

    Article  CAS  PubMed  Google Scholar 

  • Passi A et al (2018) RepTB: a gene ontology based drug repurposing approach for tuberculosis. J Chem 10(1):24

    CAS  Google Scholar 

  • Pauli I et al (2013) Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J Chem Inf Model 53(9):2390–2401

    Article  CAS  PubMed  Google Scholar 

  • Pedlar CR, Newell J, Lewis NA (2019) Blood biomarker profiling and monitoring for high-performance physiology and nutrition: current perspectives, limitations and recommendations. Sports Med 49(2):185–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Chen L, Zhang H (2020) Serum proteomic analysis of Mycobacterium tuberculosis antigens for discriminating active tuberculosis from latent infection. J Int Med Res 48(3):0300060520910042

    Article  CAS  PubMed Central  Google Scholar 

  • Pinto SM et al (2018) Integrated multi-omic analysis of Mycobacterium tuberculosis H37Ra redefines virulence attributes. Front Microbiol 9:1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Prada CF, Boore JL (2019) Gene annotation errors are common in the mammalian mitochondrial genomes database. BMC Genomics 20(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Prathipati P, Ma NL, Keller TH (2008) Global Bayesian models for the prioritization of antitubercular agents. J Chem Inf Model 48(12):2362–2370

    Article  CAS  PubMed  Google Scholar 

  • Priya Doss CG et al (2014) Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective. Biomed Res Int 2014:895831

    Article  PubMed Central  CAS  Google Scholar 

  • Pushkaran AC et al (2019) Combination of repurposed drug diosmin with amoxicillin-clavulanic acid causes synergistic inhibition of mycobacterial growth. Sci Rep 9(1):1–14

    Article  CAS  Google Scholar 

  • Pushpakom S et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1):41–58

    Article  CAS  PubMed  Google Scholar 

  • Qi Y et al (2012) Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection. BMC Infect Dis 12(1):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin D (2019) Next-generation sequencing and its clinical application. Cancer Biol Med 16(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358

    Article  PubMed  Google Scholar 

  • Rani J et al (2020) Repurposing of FDA-approved drugs to target MurB and MurE enzymes in Mycobacterium tuberculosis. J Biomol Struct Dyn 38(9):2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Rao PN, Suneetha S (2018) Current situation of leprosy in India and its future implications. Indian Dermatol Online J 9(2):83

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao ASS, Vazquez JA (2020) Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infect Control Hosp Epidemiol 41(7):826–830

    Article  CAS  Google Scholar 

  • Romanowski K et al (2020) Using whole genome sequencing to determine the timing of secondary tuberculosis in British Columbia, Canada. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1224

  • Rufai SB, Singh S (2019) Whole-genome sequencing of two extensively drug-resistant Mycobacterium tuberculosis isolates from India. Microbiol Resour Announc 8(7):e00007-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarnaik A et al (2020) High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol 64:141–150

    Article  CAS  PubMed  Google Scholar 

  • Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 17(2):97

    Article  CAS  PubMed  Google Scholar 

  • Schuenemann VJ et al (2013) Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341(6142):179–183

    Article  CAS  PubMed  Google Scholar 

  • Scollard DM et al (2006) The continuing challenges of leprosy. Clin Microbiol Rev 19(2):338–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellwood MA et al (2018) Artificial intelligence in drug discovery. Future Med Chem 10(17):2025–2028. https://doi.org/10.4155/fmc-2018-0212

    Article  CAS  PubMed  Google Scholar 

  • Shi F et al (2020) Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev Biomed Eng 14:4–15

    Article  Google Scholar 

  • Signorelli CM (2018) Can computers overcome humans? Consciousness interaction and its implications. In: 2018 IEEE 17th international conference on cognitive informatics & cognitive computing (ICCI* CC). IEEE

    Google Scholar 

  • Silva DR et al (2018) New and repurposed drugs to treat multidrug-and extensively drug-resistant tuberculosis. J Bras Pneumol 44(2):153–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh P, Cole ST (2011) Mycobacterium leprae: genes, pseudogenes and genetic diversity. Future Microbiol 6(1):57–71

    Article  CAS  PubMed  Google Scholar 

  • Singh P et al (2015) Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc Natl Acad Sci 112(14):4459–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Somvanshi P, Grover A (2019) Drug repurposing against arabinosyl transferase (EmbC) of Mycobacterium tuberculosis: essential dynamics and free energy minima based binding mechanics analysis. Gene 693:114–126

    Article  CAS  PubMed  Google Scholar 

  • Singh R et al (2020) Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 128(6):1547–1567

    Article  CAS  PubMed  Google Scholar 

  • Spinelli SV et al (2013) Altered microRNA expression levels in mononuclear cells of patients with pulmonary and pleural tuberculosis and their relation with components of the immune response. Mol Immunol 53(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Steinegger M, Salzberg SL (2020) Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol 21(1):1–12

    Article  CAS  Google Scholar 

  • Strukov D et al (2019) Building brain-inspired computing. Nat Commun 10(1):4838

    Article  CAS  Google Scholar 

  • Å tular T et al (2016) Discovery of mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J Med Chem 59(24):11069–11078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun W et al (2016) Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg Microb Infect 5(1):1–11

    Article  Google Scholar 

  • Swayamsiddha S, Mohanty C (2020) Application of cognitive internet of medical things for COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev 14(5):911–915

    Article  Google Scholar 

  • Tagliani E et al (2021) Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: an ECDC pilot study. Eur Respir J 57:2002272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur V, Varshney R (2010) Challenges and strategies for next generation sequencing (NGS) data analysis. J Comput Sci Syst Biol 3:40–42

    Article  Google Scholar 

  • Ting DSW et al (2020) Digital technology and COVID-19. Nat Med 26(4):459–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tio-Coma M et al (2020) Detection of new Mycobacterium leprae subtype in Bangladesh by genomic characterization to explore transmission patterns. medRxiv

    Google Scholar 

  • Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44–56

    Article  CAS  PubMed  Google Scholar 

  • Truman RW et al (2011) Probable zoonotic leprosy in the southern United States. N Engl J Med 364(17):1626–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turing AM (2009) Computing machinery and intelligence. In: Parsing the turing test. Springer, Dordrecht, pp 23–65

    Chapter  Google Scholar 

  • Uddin R et al (2016) Computational identification of potential drug targets against Mycobacterium leprae. Med Chem Res 25(3):473–481

    Article  CAS  Google Scholar 

  • Vaishya R et al (2020) Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev 14(4):337–339

    Article  Google Scholar 

  • Vayena E, Blasimme A, Cohen IG (2018) Machine learning in medicine: addressing ethical challenges. PLoS Med 15(11):e1002689

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadapurkar RM, Vyas R (2018) Computational analysis of next generation sequencing data and its applications in clinical oncology. Inform Med Unlocked 11:75–82

    Article  Google Scholar 

  • Wakeling MN et al (2019) Misannotation of multiple-nucleotide variants risks misdiagnosis. Wellcome Open Res 4:145

    Article  PubMed  Google Scholar 

  • Waman VP et al (2019) Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerg Microb Infect 8(1):109–118

    Article  CAS  Google Scholar 

  • Wan L et al (2020) Genomic analysis identifies mutations concerning drug-resistance and Beijing genotype in multidrug-resistant Mycobacterium tuberculosis isolated from China. Front Microbiol 11:1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanichthanarak K, Fahrmann JF, Grapov D (2015) Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights 10(Suppl 4):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DL et al (2009) Implications of high level pseudogene transcription in Mycobacterium leprae. BMC Genomics 10:397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilsey C et al (2013) A large scale virtual screen of DprE1. Comput Biol Chem 47:121–125

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2018) Global health TB report. WHO, Geneva

    Google Scholar 

  • Wu J et al (2012) Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. Hum Immunol 73(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Benner MJ, Hancock RE (2014) NetworkAnalyst-integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res 42(W1):W167–W174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y et al (2018) Automatic detection of mycobacterium tuberculosis using artificial intelligence. J Thorac Dis 10(3):1936

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119(18):10520–10594

    Article  CAS  PubMed  Google Scholar 

  • Yi Z et al (2012) Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One 7(8):e43184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yohe S, Thyagarajan B (2017) Review of clinical next-generation sequencing. Arch Pathol Lab Med 141(11):1544–1557

    Article  CAS  PubMed  Google Scholar 

  • Zak DE et al (2016) A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387(10035):2312–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cheng B, Bingying X (2017) Application of next-generation sequencing technology in forensic science. Chin J Forensic Med 32(1):40–43

    Google Scholar 

  • Zhang G et al (2018a) Virtual screening of small molecular inhibitors against DprE1. Molecules 23(3):524

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang X et al (2018b) Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge. BMC Med Inform Decis Mak 18(2):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2019) NCNet: deep learning network models for predicting function of non-coding DNA. Front Genet 10:432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong F et al (2018) Artificial intelligence in drug design. Sci China Life Sci 61(10):1191–1204

    Article  PubMed  Google Scholar 

  • Zhu H (2020) Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 60:573–589

    Article  CAS  PubMed  Google Scholar 

  • Zou J et al (2019) A primer on deep learning in genomics. Nat Genet 51(1):12–18

    Article  CAS  PubMed  Google Scholar 

  • Zuniga ES, Early J, Parish T (2015) The future for early-stage tuberculosis drug discovery. Future Microbiol 10(2):217–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Aparup Das, Director, ICMR-National Institute of Research in Tribal Health, Jabalpur for the encouragement and kind support. The manuscript has been approved by the Publication Screening Committee of ICMR-NIRTH, Jabalpur and assigned with the number ICMR-NIRTH/PSC/51/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M., Singh, P. (2021). Use of Artificial Intelligence in Research and Clinical Decision Making for Combating Mycobacterial Diseases. In: Saxena, A., Chandra, S. (eds) Artificial Intelligence and Machine Learning in Healthcare . Springer, Singapore. https://doi.org/10.1007/978-981-16-0811-7_9

Download citation

Publish with us

Policies and ethics