Skip to main content

Enhanced Algorithm for Logical Topology-Based Fault Link Recovery in Crossbar Networks

  • Conference paper
  • First Online:
Proceedings of International Conference on Innovations in Information and Communication Technologies (ICI2CT 2020)

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 116 Accesses

Abstract

Conventionally, virtual topology nodes are mapped with actual physical topology nodes and links mapped with lightpaths (LPs). But this is computationally unwieldy becoming huge and more complex with increasing network size. This work proposes a scheme for optimal utilization of the network, minimizing network congestion by allocating efficient LPs in existing physical systems. When network size increases, the degree of the sub-trees also increases but without any increase of carrier wavelengths; the number of hops (and carrier wavelengths) decreases as it generates direct paths between the longest path nodes. Structural metrics of the physical and logical topologies of this method are more efficient. It supports multicast connections and minimizes data replication. The outer iteration of the proposed algorithm is executed twice; the first iteration yields the network’s logical topology, while the second gives “complete bipartite graph.” Using the logical topology, the path length of the longest distance node is reduced, and direct connections between nodes are created. The reconfiguration is used only for the nearest node of logical topology, and this reduces the number of hops between the nearest nodes to three. The maximum path length is 6 for any n × n crossbar network. This will cause reduction in the number of protection cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivarammurthy, C., Gurusamy, M.: WDM Optical Networks Concepts and Design Algorithms. Publishing as Pearson Prentice Hall (2002)

    Google Scholar 

  2. Yang, Y., Wang, J.: A new design for wide-sense nonblocking multicast switching networks. IEEE Trans. Commun. 53(3) (2005)

    Google Scholar 

  3. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo (1992)

    MATH  Google Scholar 

  4. Li, B., Ganz, A.: Virtual topologies for WDM Star LANS—the regular structures approach. In: INFOCOM’92, 11th Annual Joint Conference IEEE Computer Communication Societies (1992)

    Google Scholar 

  5. Ramaswami, R.: Multi wavelength lightwave networks for computer communication. IEEE Commun. Mag. 31(2), 78–88 (1993)

    Article  Google Scholar 

  6. Lee, C., Oruc, A.Y.: Design of efficient and easily routable generalized connectors. IEEE Trans. Commun. 43, 646–650 (1995)

    Article  Google Scholar 

  7. Rajiv, R., Sivarajan, K.N.: Design of logical topologies for wavelength-routed optical networks. IEEE J. Sel. Area Commun. 14(5) (1996)

    Google Scholar 

  8. Leonardi, E., Mellia, M., Marsan, M.A.: Algorithms for the logical topology design in WDM all-optical networks. Opt. Netw. 1(1), 35–46 (2000)

    Google Scholar 

  9. Quinn, M.J.: Parallel Computing. Tata McGraw Hill Edition, New Delhi, India (2002)

    Google Scholar 

  10. Madhyastha, H.V., Balakrishnan, N.: An efficient algorithm for virtual-wavelength-path routing minimizing average number of hops. IEEE J. Sel. Areas Commun. 21(9), 1433–1439 (2003)

    Article  Google Scholar 

  11. Dutta, R., Rouskas, G.N.: A survey of virtual topology design algorithms for wavelength routed optical networks. Opt. Netw. Mag. 1(1), 73–89 (2000)

    Google Scholar 

  12. Kalamani, K., Umarani, S., Nagarajan, N.: Dynamic routing and wavelength assignment for WDM all optical hypercube network. In: International Conference on Global Manufacturing and Innovation (An Advanced Optimization Technology approach), GMI 2006, Coimbatore Institute of Technology, Coimbatore (2006)

    Google Scholar 

  13. Labourdette, J.F.P., Acampora, A.S.: Logically rearrangeablemultihoplightwave networks. IEEE Trans. Commun. 39, 1223–1230 (1991)

    Article  Google Scholar 

  14. Bienstock, D., Gunluk, O.: Computational experience with a difficult mixed-integer multicommodity flow problem. Math. Program. 68, 213–237 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Bannister, J.A., Fratta, L., Berla, M.: Topological design of the wavelength-division optical network. In: Proceedings. IEEE INFOCOM ’90, pp. 1005–1013 (1990)

    Google Scholar 

  16. Chlamtac, I., Ganz, A., Karni, G.: Lightnets: Topologies for high-speed optical networks. J. Lightwave Technol 11, 951–961 (1993)

    Article  Google Scholar 

  17. Zhang, Z., Acampora, A.: A heuristic wavelength assignment algorithm for multihop WDM networks with wavelength routing and wavelength reuse. IEEE/ACM Trans. Network. 3(3), 281–288 (1994)

    Google Scholar 

  18. Xin, Y., Rouskas, G.N., Perros, H.G.: On the physical and logical topology design of large-scale optical networks. J. Lightwave Technol. 21(4) (2003)

    Google Scholar 

  19. Mellia, M., Nucci, A., Grosso, A., Leonardi, E., Ajmone Marsan, M.: Optimal Design of Logical Topologies in Wavelength-Routed Optical Networks with Multicast, 0–7803–7206–9/01/$17.00 © 2001 IEEE (2001)

    Google Scholar 

  20. Wong, H., et al.: Resilient quantum key distribution (QKD)-integrated optical networks with secret-key recovery strategy. IEEE Access 7 (2019)

    Google Scholar 

  21. Yu, N., et al.: Wired and wireless network cooperation for wide-area quick disaster recovery. IEEE Access 6 (2018)

    Google Scholar 

  22. Raza, M., Samineni, V., Robertson, W.: Physical and logical topology slicing through SDN. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, pp. 1–4 (2016). https://doi.org/10.1109/CCECE.2016.7726827

  23. Yang, Y., Wang, J., Qiao, C.: Nonblocking WDM multicast switching networks IEEE Trans. Parallel Distrib. Syst. 11, 1274–1287 (2000)

    Article  Google Scholar 

  24. Mukherjee, B., Ramamurthy, D., Banerjee, D., Mukherjee, A.: Some principles for designing a wide-area optical network. In: Proceedings IEEE INFOCOMM’94, pp.117–129 (1994)

    Google Scholar 

  25. Yang, Y., Wang, J.: A fault-tolerant rearrangeable permutation network. IEEE Trans. Comput. 53(4) (2004)

    Google Scholar 

  26. Chidhambararajan, B., Kalamani, K., Nagarajan, N., Srivatsa, S.K.: Multicast connection capacity of WDM switching networks without wavelength conversion. WSEAS Trans. Circ. Syst. 4(11). ISSN 1109–2734 (2005)

    Google Scholar 

  27. Zhang, Z., Yang, Y.: Performance analysis of K-fold multicast networks. IEEE Trans. Commun. 53(2) (2005)

    Google Scholar 

  28. Deng, Y., Lee, T.T.: Crosstalk-Free Conjugate Networks For Optical Multicast Switching. arXiv:cs/0610040v1 [cs.NI], vol.9 (2006)

  29. Nagarajan, N., Savithri, D., Kalamani, K., Srivatsa, S.K.: Comparison of various topologies using functional and structural metrics, to appear in WSEAS Transactions (2005)

    Google Scholar 

  30. Trobec, R., Jovanovic, U.: Regular d-neighbors topologies. In: 9th EuromicroWksp. Parallel and Distributed Processing, IEEE, pp. 34–38 (2001)

    Google Scholar 

  31. Blouin, et al.: Comparison of two optical-core networks. J. Opt. Net., Opt. Soc. Am. 1(1) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. PavaiMadheswari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Umarani, S., PavaiMadheswari, S. (2021). Enhanced Algorithm for Logical Topology-Based Fault Link Recovery in Crossbar Networks. In: Garg, L., Sharma, H., Goyal, S.B., Singh, A. (eds) Proceedings of International Conference on Innovations in Information and Communication Technologies. ICI2CT 2020. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-0873-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0873-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0872-8

  • Online ISBN: 978-981-16-0873-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics