Skip to main content

A Common Molecular Switch for H2S to Regulate Multiple Protein Targets

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1315))

Abstract

Hydrogen sulfide, a small molecule, produced by endogenous enzymes, such as CTH, CBS, and MPST using L-cysteine as substrates, has been reported to have numerous protective effects. However, the key problem that the target of H2S and how it can affect the structure and activity of biological molecules is still unknown. Till now, there are two main theories of its working mechanism. One is that H2S can modify the free thiol in cysteine to produce the persulfide state of the thiol and the sulfhydration of cysteine can significantly change the structure and activity of target proteins. The other theory is that H2S, as an antioxidant molecule, can directly break the disulfide bond in target proteins, and the persulfide state of thiol can be an intermediate product during the reaction. Both phenomena exit for no doubt since they are both supported by large amounts of experiments. Here, we will summarize both theories and try to discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them. Therefore, we will discover more protein targets of H2S with the mechanism and understand more about the effect of this small molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Castelblanco M, Nasi S, Pasch A, So A, Busso N (2020) The role of the gasotransmitter hydrogen sulfide in pathological calcification. Br J Pharmacol 177:778–792

    Article  CAS  PubMed  Google Scholar 

  2. Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E, Roviezzo F, Morelli A, Cirino G, Wallace JL, Fiorucci S (2006) Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther 316:325–335

    Article  CAS  PubMed  Google Scholar 

  3. Kimura H (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 177:720–733

    Article  CAS  PubMed  Google Scholar 

  4. Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17:45–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D (2020) Hydrogen sulfide and its donors: novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 34:101564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mani S, Untereiner A, Wu L, Wang R (2014) Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid Redox Signal 20:805–817

    Article  CAS  PubMed  Google Scholar 

  8. Patnana M, Menias CO, Pickhardt PJ, Elshikh M, Javadi S, Gaballah A, Shaaban AM, Korivi BR, Garg N, Elsayes KM (2018) Liver calcifications and calcified liver masses: pattern recognition approach on CT. AJR Am J Roentgenol 211:76–86

    Article  PubMed  Google Scholar 

  9. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  CAS  PubMed  Google Scholar 

  10. Wu D, Wang J, Li H, Xue M, Ji A, Li Y (2015) Role of hydrogen sulfide in ischemia-reperfusion injury. Oxidative Med Cell Longev 2015:186908

    Article  Google Scholar 

  11. Zhu XY, Liu SJ, Liu YJ, Wang S, Ni X (2010) Glucocorticoids suppress cystathionine gamma-lyase expression and H2S production in lipopolysaccharide-treated macrophages. Cell Mol Life Sci 67:1119–1132

    Article  CAS  PubMed  Google Scholar 

  12. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, Yao T, Zhu YC (2007) Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 293:H2093–H2100

    Article  CAS  PubMed  Google Scholar 

  14. Yan H, Du J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313:22–27

    Article  CAS  PubMed  Google Scholar 

  15. Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763

    Article  CAS  PubMed  Google Scholar 

  16. Chuah SC, Moore PK, Zhu YZ (2007) S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol 293:H2693–H2701

    Article  CAS  PubMed  Google Scholar 

  17. Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40

    Article  CAS  PubMed  Google Scholar 

  18. Abdollahi GA, Toro G, Szaniszlo P, Pavlidou A, Bibli SI, Thanki K, Resto VA, Chao C, Hellmich MR, Szabo C, Papapetropoulos A, Modis K (2020) 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. Br J Pharmacol 177:866–883

    Article  CAS  Google Scholar 

  19. Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG (2012) Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1alpha and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 1:e4093

    Article  CAS  Google Scholar 

  20. van den Born JC, Mencke R, Conroy S, Zeebregts CJ, van Goor H, Hillebrands JL (2016) Cystathionine gamma-lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro-angiogenesis. Sci Rep 6:34608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E, Szabo C (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109:9161–9166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Coletta C, Modis K, Szczesny B, Brunyanszki A, Olah G, Rios EC, Yanagi K, Ahmad A, Papapetropoulos A, Szabo C (2015) Regulation of vascular tone, angiogenesis and cellular bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S pathway: functional impairment by hyperglycemia and restoration by DL-alpha-lipoic acid. Mol Med 21:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jang H, Oh MY, Kim YJ, Choi IY, Yang HS, Ryu WS, Lee SH, Yoon BW (2014) Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res 92:1520–1528

    Article  CAS  PubMed  Google Scholar 

  24. Katsouda A, Bibli SI, Pyriochou A, Szabo C, Papapetropoulos A (2016) Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol Res 113:175–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kohn C, Dubrovska G, Huang Y, Gollasch M (2012) Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8:81–86

    PubMed Central  PubMed  Google Scholar 

  26. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Szabo C, Papapetropoulos A (2011) Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 164:853–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 110:12474–12479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wang MJ, Cai WJ, Li N, Ding YJ, Chen Y, Zhu YC (2010) The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal 12:1065–1077

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Yan J, Cao X, Hua P, Li Z (2020) Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1alpha activation. Biochem Pharmacol 172:113775

    Article  CAS  PubMed  Google Scholar 

  31. Zhen Y, Pan W, Hu F, Wu H, Feng J, Zhang Y, Chen J (2015) Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-kappaB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 46:2194–2204

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Y, Li XH, Zhang CC, Wang MJ, Xue WL, Wu DD, Ma FF, Li WW, Tao BB, Zhu YC (2016) Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/mTOR pathway. Am J Physiol Cell Physiol 310:C305–C317

    Article  PubMed  Google Scholar 

  33. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:a72

    Article  Google Scholar 

  34. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC (2013) VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 19:448–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC (2013) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19:5–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu JH, Cai WJ, Zhu YZ, Zhu YC (2014) Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na(+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid Redox Signal 21:2061–2082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Paul BD, Snyder SH (2012) H(2)S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  CAS  PubMed  Google Scholar 

  38. Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol 230:29–59

    Article  CAS  PubMed  Google Scholar 

  39. Meng G, Zhao S, Xie L, Han Y, Ji Y (2018) Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 175:1146–1156

    Article  CAS  PubMed  Google Scholar 

  40. Paul BD, Snyder SH (2018) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109

    Article  CAS  PubMed  Google Scholar 

  41. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:l1

    Article  Google Scholar 

  42. Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, Motohashi H, Yamamoto M, Suematsu M, Kurose H, van der Vliet A, Freeman BA, Shibata T, Uchida K, Kumagai Y, Akaike T (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol 8:714–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919

    Article  CAS  PubMed  Google Scholar 

  44. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45:13–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cheung SH, Lau J (2018) Hydrogen sulfide mediates athero-protection against oxidative stress via S-sulfhydration. PLoS One 13:e194176

    Article  Google Scholar 

  46. Cai J, Shi X, Wang H, Fan J, Feng Y, Lin X, Yang J, Cui Q, Tang C, Xu G, Geng B (2016) Cystathionine gamma lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor gamma activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. Biochim Biophys Acta 1861:419–429

    Article  CAS  PubMed  Google Scholar 

  47. Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, Cui Q, Tang C, Cai J, Xu G, Geng B (2019) Sulfhydrated Sirtuin-1 increasing its deacetylation activity is an essential epigenetics mechanism of anti-atherogenesis by hydrogen sulfide. Antioxid Redox Signal 30:184–197

    Article  CAS  PubMed  Google Scholar 

  48. Modis K, Ju Y, Ahmad A, Untereiner AA, Altaany Z, Wu L, Szabo C, Wang R (2016) S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113:116–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park CM, Carroll KS, Filipovic MR, Xian M (2014) Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem Int Ed Engl 53:575–581

    Article  CAS  PubMed  Google Scholar 

  50. Meng G, Xiao Y, Ma Y, Tang X, Xie L, Liu J, Gu Y, Yu Y, Park CM, Xian M, Wang X, Ferro A, Wang R, Moore PK, Zhang Z, Wang H, Han Y, Ji Y (2016) Hydrogen sulfide regulates Kruppel-like factor 5 transcription activity via specificity protein 1 S-Sulfhydration at Cys664 to prevent myocardial hypertrophy. J Am Heart Assoc 5:e004160

    Article  PubMed Central  PubMed  Google Scholar 

  51. Paul BD, Snyder SH (2015a) Protein sulfhydration. Methods Enzymol 555:79–90

    Article  CAS  PubMed  Google Scholar 

  52. Saha S, Chakraborty PK, Xiong X, Dwivedi SK, Mustafi SB, Leigh NR, Ramchandran R, Mukherjee P, Bhattacharya R (2016) Cystathionine beta-synthase regulates endothelial function via protein S-sulfhydration. FASEB J 30:441–456

    Article  CAS  PubMed  Google Scholar 

  53. Zhao K, Ju Y, Li S, Altaany Z, Wang R, Yang G (2014) S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 15:792–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS (2014) Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 21:2531–2542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Boivin B, Zhang S, Arbiser JL, Zhang ZY, Tonks NK (2008) A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc Natl Acad Sci USA 105:9959–9964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4:a86

    Article  CAS  Google Scholar 

  57. Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ, Calvert JW (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116:29–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Yang Y, Shi W, Chen X, Cui N, Konduru AS, Shi Y, Trower TC, Zhang S, Jiang C (2011) Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J Biol Chem 286:9298–9307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sun X, Zhao D, Lu F, Peng S, Yu M, Liu N, Sun Y, Du H, Wang B, Chen J, Dong S, Lu F, Zhang W (2020) Hydrogen sulfide regulates muscle RING finger-1 protein S-sulfhydration at Cys(44) to prevent cardiac structural damage in diabetic cardiomyopathy. Br J Pharmacol 177:836–856

    Article  CAS  PubMed  Google Scholar 

  60. Yu M, Du H, Wang B, Chen J, Lu F, Peng S, Sun Y, Liu N, Sun X, Shiyun D, Zhao Y, Wang Y, Zhao D, Lu F, Zhang W (2020) Exogenous H2S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 Ubiquitylation in diabetic hearts. Aging Dis 11:286–300

    Article  PubMed Central  PubMed  Google Scholar 

  61. Bibli SI, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B, Schurmann C, Siragusa M, Siuda D, Luck B, Abdel MR, Filis KA, Zografos G, Chen C, Wang DW, Pfeilschifter J, Brandes RP, Szabo C, Papapetropoulos A, Fleming I (2019) Cystathionine gamma Lyase Sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay Atherogenesis. Circulation 139:101–114

    Article  CAS  PubMed  Google Scholar 

  62. Aroca A, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168:334–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Pan J, Carroll KS (2013) Persulfide reactivity in the detection of protein s-sulfhydration. ACS Chem Biol 8:1110–1116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561

    Article  CAS  PubMed  Google Scholar 

  65. Paul BD, Snyder SH (2015b) H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci 40:687–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM (2013) Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J 280:6150–6161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Park CM, Macinkovic I, Filipovic MR, Xian M (2015) Use of the “tag-switch” method for the detection of protein S-sulfhydration. Methods Enzymol 555:39–56

    Article  CAS  PubMed  Google Scholar 

  68. Wedmann R, Onderka C, Wei S, Szijarto IA, Miljkovic JL, Mitrovic A, Lange M, Savitsky S, Yadav PK, Torregrossa R, Harrer EG, Harrer T, Ishii I, Gollasch M, Wood ME, Galardon E, Xian M, Whiteman M, Banerjee R, Filipovic MR (2016) Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci 7:3414–3426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Gao XH, Krokowski D, Guan BJ, Bederman I, Majumder M, Parisien M, Diatchenko L, Kabil O, Willard B, Banerjee R, Wang B, Bebek G, Evans CR, Fox PL, Gerson SL, Hoppel CL, Liu M, Arvan P, Hatzoglou M (2015) Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. elife 4:e10067

    Article  PubMed Central  PubMed  Google Scholar 

  70. Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR (2019) Selective Persulfide detection reveals evolutionarily conserved antiaging effects of S-Sulfhydration. Cell Metab 30:1152–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hubbard SR (1999) Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol 71:343–358

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  CAS  PubMed  Google Scholar 

  73. Hubbard SR, Wei L, Ellis L, Hendrickson WA (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746–754

    Article  CAS  PubMed  Google Scholar 

  74. Feese MD, Tamada T, Kato Y, Maeda Y, Hirose M, Matsukura Y, Shigematsu H, Muto T, Matsumoto A, Watarai H, Ogami K, Tahara T, Kato T, Miyazaki H, Kuroki R (2004) Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. Proc Natl Acad Sci USA 101:1816–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41:573–586

    Article  CAS  PubMed  Google Scholar 

  76. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  77. Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17:58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Liu HD, Zhang AJ, Xu JJ, Chen Y, Zhu YC (2016) H2S protects against fatal myelosuppression by promoting the generation of megakaryocytes/platelets. J Hematol Oncol 9:13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641

    Article  CAS  PubMed  Google Scholar 

  81. Johansen D, Ytrehus K, Baxter GF (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury--evidence for a role of K ATP channels. Basic Res Cardiol 101:53–60

    Article  CAS  PubMed  Google Scholar 

  82. Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28:5376–5387

    Article  CAS  PubMed  Google Scholar 

  83. Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Li Z, Polhemus DJ, Lefer DJ (2018) Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res 123:590–600

    Article  CAS  PubMed  Google Scholar 

  85. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    Article  CAS  PubMed  Google Scholar 

  86. Feng W, Teo XY, Novera W, Ramanujulu PM, Liang D, Huang D, Moore PK, Deng LW, Dymock BW (2015) Discovery of new H2S releasing Phosphordithioates and 2,3-Dihydro-2-phenyl-2-sulfanylenebenzo[d][1,3,2]oxazaphospholes with improved antiproliferative activity. J Med Chem 58:6456–6480

    Article  CAS  PubMed  Google Scholar 

  87. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon GS, Gojon GJ, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H(2)S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ (2014) S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal 20:2303–2316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Pan LL, Liu XH, Gong QH, Zhu YZ (2011) S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 41:205–215

    Article  CAS  PubMed  Google Scholar 

  90. Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ (2018) Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of ca(2+)/calmodulin-dependent protein kinase II. Redox Biol 19:250–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Wen YD, Wang H, Zhu YZ (2018) The drug developments of hydrogen sulfide on cardiovascular disease. Oxidative Med Cell Longev 2018:4010395

    Article  Google Scholar 

  92. Kang DH, Lee DJ, Lee KW, Park YS, Lee JY, Lee SH, Koh YJ, Koh GY, Choi C, Yu DY, Kim J, Kang SW (2011) Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol Cell 44:545–558

    Article  CAS  PubMed  Google Scholar 

  93. Wedmann R, Bertlein S, Macinkovic I, Boltz S, Miljkovic J, Munoz LE, Herrmann M, Filipovic MR (2014) Working with "H2S": facts and apparent artifacts. Nitric Oxide 41:85–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding of innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005 to Yi-Chun Zhu). This work was supported by Ying Chen (Department of Physiology and Pathophysiology of Fudan University) in sketch drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chun Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tao, BB., Zhu, YC. (2021). A Common Molecular Switch for H2S to Regulate Multiple Protein Targets. In: Zhu, YC. (eds) Advances in Hydrogen Sulfide Biology. Advances in Experimental Medicine and Biology, vol 1315. Springer, Singapore. https://doi.org/10.1007/978-981-16-0991-6_1

Download citation

Publish with us

Policies and ethics