Skip to main content

On the Performance of Convolutional Neural Networks Under High and Low Frequency Information

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Included in the following conference series:

Abstract

Convolutional neural networks (CNNs) have shown very promising performance in recent years for different problems, including object recognition, face recognition, medical image analysis, etc. However, generally the trained CNN models are tested over the test set which is very similar to the trained set. The generalizability and robustness of the CNN models are very important aspects to make it to work for the unseen data. In this letter, we study the performance of CNN models over the high and low frequency information of the images. We observe that the trained CNN fails to generalize over the high and low frequency images. In order to make the CNN robust against high and low frequency images, we propose the stochastic filtering based data augmentation during training. A satisfactory performance improvement has been observed in terms of the high and low frequency generalization and robustness with the proposed stochastic filtering based data augmentation approach. The experimentations are performed using ResNet50 model over the CIFAR-10 dataset and ResNet101 model over Tiny-ImageNet dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cs.toronto.edu/~kriz/cifar.html.

  2. 2.

    https://www.kaggle.com/c/tiny-imagenet.

References

  1. Agrawal, A., Mittal, N.: Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. Vis. Comput. 36(2), 405–412 (2020)

    Article  Google Scholar 

  2. Babu, K.K., Dubey, S.R.: PCSGAN: perceptual cyclic-synthesized generative adversarial networks for thermal and NIR to visible image transformation. arXiv preprint arXiv:2002.07082 (2020)

  3. Basha, S.S., Dubey, S.R., Pulabaigari, V., Mukherjee, S.: Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 378, 112–119 (2020)

    Article  Google Scholar 

  4. Choi, J.Y., Lee, B.: Combining of multiple deep networks via ensemble generalization loss, based on MRI images, for Alzheimer’s disease classification. IEEE Signal Process. Lett. 27, 206–210 (2020)

    Article  Google Scholar 

  5. Dubey, S.R., Chakraborty, S., Roy, S.K., Mukherjee, S., Singh, S.K., Chaudhuri, B.B.: DiffGrad: an optimization method for convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31, 4500–4511 (2019)

    Article  MathSciNet  Google Scholar 

  6. Dubey, S.R., Roy, S.K., Chakraborty, S., Mukherjee, S., Chaudhuri, B.B.: Local bit-plane decoded convolutional neural network features for biomedical image retrieval. Neural Comput. Appl. 32, 7539–7551 (2020)

    Google Scholar 

  7. Hayou, S., Doucet, A., Rousseau, J.: On the selection of initialization and activation function for deep neural networks. arXiv preprint arXiv:1805.08266 (2018)

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  11. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  12. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Tront (2009)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Le, Y., Yang, X.: Tiny ImageNet visual recognition challenge. CS 231N 7, 7 (2015)

    Google Scholar 

  15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  16. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  17. Ma, C., Xu, Y., Ni, B., Yang, X.: When correlation filters meet convolutional neural networks for visual tracking. IEEE Signal Process. Lett. 23(10), 1454–1458 (2016)

    Article  Google Scholar 

  18. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  20. Roy, S.K., Krishna, G., Dubey, S.R., Chaudhuri, B.B.: HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17, 277–281 (2019)

    Article  Google Scholar 

  21. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  22. Salamon, J., Bello, J.P.: Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process. Lett. 24(3), 279–283 (2017)

    Article  Google Scholar 

  23. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  24. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Singh, V., Sharma, A., Devanathan, S., Mittal, A.: High-frequency refinement for sharper video super-resolution. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 3299–3308 (2020)

    Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Srivastava, Y., Murali, V., Dubey, S.R.: Hard-mining loss based convolutional neural network for face recognition. arXiv preprint arXiv:1908.09747 (2019)

  29. Srivastava, Y., Murali, V., Dubey, S.R.: A performance evaluation of loss functions for deep face recognition. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds.) NCVPRIPG 2019. CCIS, vol. 1249, pp. 322–332. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8697-2_30

    Chapter  Google Scholar 

  30. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  31. Tariang, D.B., Chakraborty, R.S., Naskar, R.: A robust residual dense neural network for countering antiforensic attack on median filtered images. IEEE Signal Process. Lett. 26(8), 1132–1136 (2019)

    Article  Google Scholar 

  32. Tirer, T., Giryes, R.: Super-resolution via image-adapted denoising CNNs: incorporating external and internal learning. IEEE Signal Process. Lett. 26(7), 1080–1084 (2019)

    Article  Google Scholar 

  33. Zhang, J., Liao, Y., Zhu, X., Wang, H., Ding, J.: A deep learning approach in the discrete cosine transform domain to median filtering forensics. IEEE Signal Process. Lett. 27, 276–280 (2020)

    Article  Google Scholar 

  34. Zhu, Y., Li, Y., Wang, S.: Unsupervised deep hashing with adaptive feature learning for image retrieval. IEEE Signal Process. Lett. 26(3), 395–399 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Ram Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yedla, R.R., Dubey, S.R. (2021). On the Performance of Convolutional Neural Networks Under High and Low Frequency Information. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics