Skip to main content

Graph-Based Depth Estimation in a Monocular Image Using Constrained 3D Wireframe Models

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Included in the following conference series:

  • 1055 Accesses

Abstract

In this paper, the problem of estimating the depth of an object from its monocular image is addressed. Here, basically, an algorithm is developed, which performs shape matching, and as a result, achieve accurate depth maps of objects. In the algorithm, first, an optimal camera position is determined. Then, the 3D model is projected onto the image plane of the camera, yielding a projected 2D image of the 3D model. An objective function determines a score based on graph-based feature matching, and the depth map is extracted from the geometrical information of the 3D model. Finally, the depth map and the original image are combined to create a 3D point cloud simulation of the object. Experimental analysis shows the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: Advances in Neural Information Processing Systems, pp. 1161–1168 (2006)

    Google Scholar 

  2. Saxena, A., Schulte, J., Ng, A.Y.: Depth estimation using monocular and stereo cues. IJCAI 7, 2197–2203 (2007)

    Google Scholar 

  3. Liu, B., Gould, S., Koller, D.: Single image depth estimation from predicted semantic labels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1253–1260. IEEE (2010)

    Google Scholar 

  4. Saxena, A., Sun, M., Ng, A.Y.: Learning 3-D scene structure from a single still image. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  5. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002). https://doi.org/10.1023/A:1014573219977

    Article  MATH  Google Scholar 

  6. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  7. Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999)

    Article  Google Scholar 

  8. Criminisi, A., Reid, I., Zisserman, A.: Single view metrology. Int. J. Comput. Vis. 40(2), 123–148 (2000). https://doi.org/10.1023/A:1026598000963

    Article  MATH  Google Scholar 

  9. Heitz, G., Gould, S., Saxena, A., Koller, D.: Cascaded classification models: combining models for holistic scene understanding. In: Advances in Neural Information Processing Systems, pp. 641–648 (2009)

    Google Scholar 

  10. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Upper Saddle River (1988)

    MATH  Google Scholar 

  11. Malathi, T., Bhuyan, M.K.: Asymmetric occlusion detection using linear regression and weight-based filling for stereo disparity map estimation. IET Comput. Vis. 10(7), 679–688 (2016). https://doi.org/10.1049/iet-cvi.2015.0214

    Article  Google Scholar 

  12. Ping-Sing, T., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)

    Article  Google Scholar 

  13. Chakrabarti, A., Zickler, T.: Depth and deblurring from a spectrally-varying depth-of-field. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 648–661. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pallab Jyoti Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, B., Dutta, H.P.J., Bhuyan, M.K. (2021). Graph-Based Depth Estimation in a Monocular Image Using Constrained 3D Wireframe Models. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics