Skip to main content

Energy Storage Materials in Thermal Storage Applications

  • Chapter
  • First Online:
Thermal Energy Storage

Abstract

This chapter contains applications of advanced energy storage materials in a broad range that includes, but not limited, in buildings, solar energy, waste heat recovery, seawater desalination, electronic cooling and photovoltaic thermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Sokolov, Y. Keizman, Performance indicators for solar pipes with phase change storage. Sol. Energy 47, 339–346 (1991)

    Article  Google Scholar 

  2. H.E.S. Fath, Technical assessment of solar thermal energy storage technologies. Renew. Energy 14, 35–40 (1998)

    Article  Google Scholar 

  3. E.-B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector. Energy 31, 2958–2968 (2006)

    Article  Google Scholar 

  4. A. Shukla, D. Buddhi, R.L. Sawhney, Solar water heaters with phase change material thermal energy storage medium: A review. Renew. Sustain. Energy Rev. 13, 2119–2125 (2009)

    Article  Google Scholar 

  5. M. Iten, S. Liu, A. Shukla, A review on the air-PCM-TES application for free cooling and heating in the buildings. Renew. Sustain. Energy Rev. 61, 175–186 (2016)

    Article  Google Scholar 

  6. E. Osterman, V. Butala, U. Stritih, PCM thermal storage system for ‘free’heating and cooling of buildings. Energy Build. 106, 125–133 (2015)

    Article  Google Scholar 

  7. F. Guarino, A. Athienitis, M. Cellura, D. Bastien, PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates. Appl. Energy 185, 95–106 (2017)

    Article  Google Scholar 

  8. B. Nie, X. She, Z. Du, C. Xie, Y. Li, Z. He, Y. Ding, System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications. Appl. Energy 251, 113254 (2019)

    Article  Google Scholar 

  9. S. Gharbi, S. Harmand, S. Ben Jabrallah, Parametric study on thermal performance of PCM heat sink used for electronic cooling, in Exergy a Better Environment and Improved Sustainability, vol. 1 (Springer, 2018), pp. 243–256

    Google Scholar 

  10. R. Kothari, P. Mahalkar, S.K. Sahu, S.I. Kundalwal, Experimental investigations on thermal performance of PCM based heat sink for passive cooling of electronic components, in ASME 2018 16th International Conference on Nanochannels, Microchannels, Minichannels, American Society of Mechanical Engineers, pp. V001T11A005–V001T11A005 (2018)

    Google Scholar 

  11. H. Usman, H.M. Ali, A. Arshad, M.J. Ashraf, S. Khushnood, M.M. Janjua, S.N. Kazi, An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat Mass Transf. 54, 3587–3598 (2018)

    Article  Google Scholar 

  12. S.S. Chougule, V.V. Nirgude, S.P. Shewale, A.T. Pise, S.K. Sahu, H. Shah, Application of paraffin based nanocomposite in heat pipe module for electronic equipment cooling. Mater. Today Proc. 5, 23333–23338 (2018)

    Article  Google Scholar 

  13. A. Moldgy, R. Parameshwaran, Study on thermal energy storage properties of organic phase change material for waste heat recovery applications. Mater. Today Proc. 5, 16840–16848 (2018)

    Article  Google Scholar 

  14. K. Merlin, J. Soto, D. Delaunay, L. Traonvouez, Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl. Energy 183, 491–503 (2016)

    Article  Google Scholar 

  15. A.I. Fernández, C. Barreneche, L. Miró, S. Brückner, L.F. Cabeza, Thermal energy storage (TES) systems using heat from waste, in Advanced Thermal Energy Storage Technology (Elsevier, 2015), pp. 479–492

    Google Scholar 

  16. M. Jaworski, R. Wnuk, M. Cieślak, B. Goetzendorf-Grabowska, Experimental investigation and mathematical modelling of thermal performance characteristics of textiles incorporating phase change materials (PCMs), in: Environmental Engineering. Proceedings of the International Conference on Environmental Engineering (ICEE, Vilnius Gediminas Technical University, Department of Construction Economics, 2017), pp. 1–9

    Google Scholar 

  17. X. Liu, Y. Lou, Preparation of microencapsulated phase change materials by the sol-gel process and its application on textiles. Fibres Text. East. Eur. (2015)

    Google Scholar 

  18. P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017)

    Article  Google Scholar 

  19. P. Zhang, Q. Liao, T. Zhang, H. Cheng, Y. Huang, C. Yang, C. Li, L. Jiang, L. Qu, High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. Nano Energy 46, 415–422 (2018)

    Article  Google Scholar 

  20. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393 (2016)

    Article  Google Scholar 

  21. X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. 113, 13953–13958 (2016)

    Article  Google Scholar 

  22. K.-K. Liu, Q. Jiang, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675–7681 (2017)

    Article  Google Scholar 

  23. H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion. Adv. Mater. 29, 1702590 (2017)

    Article  Google Scholar 

  24. J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017)

    Article  Google Scholar 

  25. Z. Yin, H. Wang, M. Jian, Y. Li, K. Xia, M. Zhang, C. Wang, Q. Wang, M. Ma, Q. Zheng, Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 9, 28596–28603 (2017)

    Article  Google Scholar 

  26. T.R. Shah, H.M. Ali, Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol. Energy 183, 173–203 (2019)

    Article  Google Scholar 

  27. C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang, E. Hitz, C. Jia, A. Gong, F. Jiang, J.Y. Zhu, Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017)

    Article  Google Scholar 

  28. X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017)

    Article  Google Scholar 

  29. L. Cui, P. Zhang, Y. Xiao, Y. Liang, H. Liang, Z. Cheng, L. Qu, High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 30, 1706805 (2018)

    Article  Google Scholar 

  30. C. Chen, L. Zhou, J. Yu, Y. Wang, S. Nie, S. Zhu, J. Zhu, Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 51, 451–456 (2018)

    Article  Google Scholar 

  31. V. Dao, H. Choi, Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob. Chall. 2, 1700094 (2018)

    Article  Google Scholar 

  32. F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489 (2018)

    Article  Google Scholar 

  33. X. Yang, Y. Yang, L. Fu, M. Zou, Z. Li, A. Cao, Q. Yuan, An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation. Adv. Funct. Mater. 28, 1704505 (2018)

    Article  Google Scholar 

  34. H.M. Ali, T.R. Shah, H. Babar, Z.A. Khan, Application of nanofluids for thermal management of photovoltaic modules: a review, in: Microfluid. Nanofluidics, IntechOpen (2018)

    Google Scholar 

  35. A. Abhat, Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 30, 313–332 (1983)

    Article  Google Scholar 

  36. I. Dincer, S. Dost, X. Li, Performance analyses of sensible heat storage systems for thermal applications. Int. J. Energy Res. 21, 1157–1171 (1997)

    Article  Google Scholar 

  37. V.V. Tyagi, S.C. Kaushik, S.K. Tyagi, T. Akiyama, Development of phase change materials based microencapsulated technology for buildings: a review. Renew. Sustain. Energy Rev. 15, 1373–1391 (2011)

    Article  Google Scholar 

  38. M. Ravikumar, P.S.S. Srinivasan, Phase change material as a thermal energy storage material for cooling of building. J. Theor. Appl. Inf. Technol. 4 (2008)

    Google Scholar 

  39. S.E. Kalnæs, B.P. Jelle, Phase change materials and products for building applications: a state-of-the-art review and future research opportunities. Energy Build. 94, 150–176 (2015)

    Article  Google Scholar 

  40. T. Khadiran, M.Z. Hussein, Z. Zainal, R. Rusli, Advanced energy storage materials for building applications and their thermal performance characterization: a review. Renew. Sustain. Energy Rev. 57, 916–928 (2016)

    Article  Google Scholar 

  41. I. Marco, Seminar on phase change materials and innovation products—Brianza Plastica, Beijing, China, Oct 20 2005

    Google Scholar 

  42. K. Peippo, P. Kauranen, P.D. Lund, A multicomponent PCM wall optimized for passive solar heating. Energy Build. 17, 259–270 (1991)

    Article  Google Scholar 

  43. D.A. Neeper, Thermal dynamics of wallboard with latent heat storage. Sol. Energy. 68, 393–403 (2000)

    Article  Google Scholar 

  44. D. Heim, J.A. Clarke, Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r. Energy Build. 36, 795–805 (2004)

    Article  Google Scholar 

  45. D. Rozanna, A. Salmiah, T.G. Chuah, R. Medyan, S.Y. Thomas Choong, M. Sa ari, A study on thermal characteristics of phase change material (PCM) in gypsum board for building application. J. Oil Palm Res. 17, 41 (2005)

    Google Scholar 

  46. H. Kaasinen, The absorption of phase change substances into commonly used building materials. Sol. Energy Mater. Sol. Cells. 27, 173–179 (1992)

    Article  Google Scholar 

  47. D. Feldman, D. Banu, D. Hawes, E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Sol. Energy Mater. 22, 231–242 (1991)

    Article  Google Scholar 

  48. Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build. Environ. 42, 2197–2209 (2007)

    Article  Google Scholar 

  49. M. Zhang, M.A. Medina, J.B. King, Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. Int. J. Energy Res. 29, 795–809 (2005)

    Article  Google Scholar 

  50. P. Schossig, H.-M. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells. 89, 297–306 (2005)

    Article  Google Scholar 

  51. A. Oliver, Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build. 48, 1–7 (2012)

    Article  Google Scholar 

  52. E. Rodriguez-Ubinas, L. Ruiz-Valero, S. Vega, J. Neila, Applications of phase change material in highly energy-efficient houses. Energy Build. 50, 49–62 (2012)

    Article  Google Scholar 

  53. J.-F. Su, X.-Y. Wang, S.-B. Wang, Y.-H. Zhao, Z. Huang, Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers. Manag. 55, 101–107 (2012)

    Article  Google Scholar 

  54. T. Toppi, L. Mazzarella, Gypsum based composite materials with micro-encapsulated PCM: experimental correlations for thermal properties estimation on the basis of the composition. Energy Build. 57, 227–236 (2013)

    Article  Google Scholar 

  55. C. Castellon, M. Nogués, J. Roca, M. Medrano, L.F. Cabeza, Microencapsulated Phase Change Materials (PCM) for Building Applications (ECOSTOCK, NJ, 200)

    Google Scholar 

  56. N.A. Yahay, H. Ahmad, Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings. Procedia Eng. 20, 238–248 (2011)

    Article  Google Scholar 

  57. S. Scalat, D. Banu, D. Hawes, J. Parish, F. Haghighata, D. Feldman, Full scale thermal testing of latent heat storage in wallboard. Sol. Energy Mater. Sol. Cells. 44, 49–61 (1996)

    Article  Google Scholar 

  58. F. Kuznik, J. Virgone, J.-J. Roux, Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build. 40, 148–156 (2008)

    Article  Google Scholar 

  59. L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007)

    Article  Google Scholar 

  60. P. Arce, C. Castellón, A. Castell, L.F. Cabeza, Use of microencapsulated PCM in buildings and the effect of adding awnings. Energy Build. 44, 88–93 (2012)

    Article  Google Scholar 

  61. A.M. Thiele, G. Sant, L. Pilon, Diurnal thermal analysis of microencapsulated PCM-concrete composite walls. Energy Convers. Manag. 93, 215–227 (2015)

    Article  Google Scholar 

  62. H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf. 32, 307–312 (1997)

    Article  Google Scholar 

  63. M. Xiao, B. Feng, K. Gong, Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers. Manag. 43, 103–108 (2002)

    Article  Google Scholar 

  64. Y. Hong, G. Xin-Shi, Preparation of polyethylene–paraffin compound as a form-stable solid-liquid phase change material. Sol. Energy Mater. Sol. Cells. 64, 37–44 (2000)

    Article  Google Scholar 

  65. M. Xiao, B. Feng, K. Gong, Thermal performance of a high conductive shape-stabilized thermal storage material. Sol. Energy Mater. Sol. Cells. 69, 293–296 (2001)

    Article  Google Scholar 

  66. M. Li, Z. Wu, M. Chen, Preparation and properties of gypsum-based heat storage and preservation material. Energy Build. 43, 2314–2319 (2011)

    Article  Google Scholar 

  67. K. Biswas, J. Lu, P. Soroushian, S. Shrestha, Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl. Energy 131, 517–529 (2014)

    Article  Google Scholar 

  68. Y.P. Zhang, K.P. Lin, R. Yang, H.F. Di, Y. Jiang, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 38, 1262–1269 (2006)

    Article  Google Scholar 

  69. G. Zhou, Y. Zhang, K. Lin, W. Xiao, Thermal analysis of a direct-gain room with shape-stabilized PCM plates. Renew. Energy 33, 1228–1236 (2008)

    Article  Google Scholar 

  70. Y. Sun, S. Wang, F. Xiao, D. Gao, Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: a review. Energy Convers. Manag. 71, 101–114 (2013)

    Article  Google Scholar 

  71. G. Kumaresan, R. Sridhar, R. Velraj, Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 47, 395–402 (2012)

    Article  Google Scholar 

  72. C. Prieto, R. Osuna, A.I. Fernández, L.F. Cabeza, Thermal storage in a MW scale. Molten salt solar thermal pilot facility: plant description and commissioning experiences. Renew. Energy 99, 852–866 (2016)

    Google Scholar 

  73. S. Guillot, A. Faik, A. Rakhmatullin, J. Lambert, E. Veron, P. Echegut, C. Bessada, N. Calvet, X. Py, Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl. Energy 94, 174–181 (2012)

    Article  Google Scholar 

  74. V. Zipf, A. Neuhäuser, C. Bachelier, R. Leithner, W. Platzer, Assessment of different PCM storage configurations in a 50 MWel CSP plant with screw heat exchangers in a combined sensible and latent storage–simulation results. Energy Procedia 69, 1078–1088 (2015)

    Article  Google Scholar 

  75. M.H. Mahfuz, A. Kamyar, O. Afshar, M. Sarraf, M.R. Anisur, M.A. Kibria, R. Saidur, I. Metselaar, Exergetic analysis of a solar thermal power system with PCM storage. Energy Convers. Manag. 78, 486–492 (2014)

    Article  Google Scholar 

  76. K. Bhagat, S.K. Saha, Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew. Energy 95, 323–336 (2016)

    Article  Google Scholar 

  77. S.C. Lin, H.H. Al-Kayiem, Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Sol. Energy 132, 267–278 (2016)

    Article  Google Scholar 

  78. D.K. Singh, S. Suresh, H. Singh, B.A.J. Rose, S. Tassou, N. Anantharaman, Myo-inositol based nano-PCM for solar thermal energy storage. Appl. Therm. Eng. 110, 564–572 (2017)

    Article  Google Scholar 

  79. P.A. Galione, C.D. Pérez-Segarra, I. Rodríguez, S. Torras, J. Rigola, Multi-layered solid-PCM thermocline thermal storage for CSP. Numerical evaluation of its application in a 50 MWe plant. Sol. Energy 119, 134–150 (2015)

    Google Scholar 

  80. I. IEA-ETSAP, Thermal energy storage: technology brief e17 (2013)

    Google Scholar 

  81. L. Miró, J. Gasia, L.F. Cabeza, Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review. Appl. Energy 179, 284–301 (2016)

    Article  Google Scholar 

  82. J. Selvaraj, M. Thenarasu, S. Aravind, P. Ashok, Waste heat recovery from castings and scrap preheating by recovered heat using an intermediate heat transfer medium, in: Applied Mechanics and Materials (Trans Tech Publications 2015), pp. 776–781

    Google Scholar 

  83. N. Maruoka, K. Sato, J. Yagi, T. Akiyama, Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 42, 215–219 (2002)

    Article  Google Scholar 

  84. L. Zhang, T. Akiyama, How to recuperate industrial waste heat beyond time and space. Int. J. Exergy 6, 214–227 (2009)

    Article  Google Scholar 

  85. V. Pandiyarajan, M. Chinnappandian, V. Raghavan, R. Velraj, Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system. Energy Policy 39, 6011–6020 (2011)

    Article  Google Scholar 

  86. M. Chinnapandian, V. Pandiyarajan, A. Prabhu, R. Velraj, Experimental investigation of a cascaded latent heat storage system for diesel engine waste heat recovery, Energy Sources, Part A Recover. Util. Environ. Eff. 37, 1308–1317 (2015)

    Google Scholar 

  87. T. Steinparzer, M. Haider, A. Fleischanderl, A. Hampel, G. Enickl, F. Zauner, Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices. J. Phys. Conf. Ser. 12158 (2012). IOP Publishing

    Google Scholar 

  88. S.S. Prabu, M.A. Asokan, A study of waste heat recovery from diesel engine exhaust using phase change material. Int. J. Chem. Tech. Res. 8, 711–717 (2015)

    Google Scholar 

  89. N. Gopal, R. Subbarao, V. Pandiyarajan, R. Velraj, Thermodynamic analysis of a diesel engine integrated with a PCM based energy storage system. Int. J. Thermodyn. 13, 15–21 (2010)

    Google Scholar 

  90. P. Kauranen, T. Elonen, L. Wikström, J. Heikkinen, J. Laurikko, Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage). Appl. Therm. Eng. 30, 631–638 (2010)

    Article  Google Scholar 

  91. J. Shon, H. Kim, K. Lee, Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger. Appl. Energy 113, 680–689 (2014)

    Article  Google Scholar 

  92. F. Baldi, C. Gabrielii, F. Melino, M. Bianchi, A preliminary study on the application of thermal storage to merchant ships. Energy Procedia. 75, 2169–2174 (2015)

    Article  Google Scholar 

  93. D.G. Beshore, F.A. Jaeger, E.M. Gartner, Thermal energy storage/waste heat recovery application in the cement industry, in: Proceedings of First Industrial Energy Technology Conference, pp. 747–756 (1979)

    Google Scholar 

  94. R. De Boer, S.F. Smeding, P.W. Bach, G. De Joode, Heat storage systems for use in an industrial batch process (Results of) a case study, in: Contribution to The Tenth International Conference on Thermal Energy Storage (ECOSTOCK, 2006)

    Google Scholar 

  95. M. Barati, S. Esfahani, T.A. Utigard, Energy recovery from high temperature slags. Energy 36, 5440–5449 (2011)

    Article  Google Scholar 

  96. T. Arunkumar, Y. Ao, Z. Luo, L. Zhang, J. Li, D. Denkenberger, J. Wang, Energy efficient materials for solar water distillation-A review. Renew. Sustain. Energy Rev. 115, 109409 (2019)

    Article  Google Scholar 

  97. N.A.S. Elminshawy, F.R. Siddiqui, G.I. Sultan, Development of a desalination system driven by solar energy and low grade waste heat. Energy Convers. Manag. 103, 28–35 (2015)

    Article  Google Scholar 

  98. V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy. 137, 877–898 (2015)

    Article  Google Scholar 

  99. M. Faegh, M.B. Shafii, Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination 409, 128–135 (2017)

    Article  Google Scholar 

  100. S.W. Sharshir, G. Peng, L. Wu, F.A. Essa, A.E. Kabeel, N. Yang, The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl. Energy 191, 358–366 (2017)

    Article  Google Scholar 

  101. T. Arunkumar, A.E. Kabeel, Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination 414, 46–50 (2017)

    Article  Google Scholar 

  102. G. Wang, Y. Fu, A. Guo, T. Mei, J. Wang, J. Li, X. Wang, Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem. Mater. 29, 5629–5635 (2017)

    Article  Google Scholar 

  103. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S.V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M.M. Rahman, T. Zhang, Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015)

    Article  Google Scholar 

  104. O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2012)

    Article  Google Scholar 

  105. Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015)

    Article  Google Scholar 

  106. Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015)

    Article  Google Scholar 

  107. H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization. Nat. Commun. 5, ncomms5449 (2014)

    Google Scholar 

  108. J.J. Yew, S. Rathi, S. Krueger, L.G. Bolton, J.M. Ananny, Connecting multiple accessories to a portable computing device (2011)

    Google Scholar 

  109. A. Van Heugten, Systems, devices, and methods for managing camera focus (2017)

    Google Scholar 

  110. Z. Ling, Z. Zhang, G. Shi, X. Fang, L. Wang, X. Gao, Y. Fang, T. Xu, S. Wang, X. Liu, Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew. Sustain. Energy Rev. 31, 427–438 (2014)

    Article  Google Scholar 

  111. Y. Deng, C. Feng, E. Jiaqiang, H. Zhu, J. Chen, M. Wen, H. Yin, Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review. Appl. Therm. Eng. 142, 10–29 (2018)

    Article  Google Scholar 

  112. D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang, J. Wang, A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl. Sci. 9, 2483 (2019)

    Article  Google Scholar 

  113. P. Huang, A. Verma, D.J. Robles, Q. Wang, P. Mukherjee, J. Sun, Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition. Appl. Therm. Eng. 132, 521–530 (2018)

    Article  Google Scholar 

  114. W.G. Alshaer, S.A. Nada, M.A. Rady, E.P. Del Barrio, A. Sommier, Thermal management of electronic devices using carbon foam and PCM/nano-composite. Int. J. Therm. Sci. 89, 79–86 (2015)

    Article  Google Scholar 

  115. A. Arshad, H.M. Ali, M. Ali, S. Manzoor, Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. Appl. Therm. Eng. 112, 143–155 (2017)

    Article  Google Scholar 

  116. Z. Luo, H. Cho, X. Luo, K. Cho, System thermal analysis for mobile phone. Appl. Therm. Eng. 28, 1889–1895 (2008)

    Article  Google Scholar 

  117. Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int. J. Heat Mass Transf. 127, 838–856 (2018)

    Article  Google Scholar 

  118. H.M. Ali, A. Saieed, W. Pao, M. Ali, Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int. J. Heat Mass Transf. 127, 381–393 (2018)

    Article  Google Scholar 

  119. B. Agostini, M. Fabbri, J.E. Park, L. Wojtan, J.R. Thome, B. Michel, State of the art of high heat flux cooling technologies. Heat Transf. Eng. 28, 258–281 (2007)

    Article  Google Scholar 

  120. M. Shtein, R. Nadiv, M. Buzaglo, O. Regev, Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl. Mater. Interfaces 7, 23725–23730 (2015)

    Article  Google Scholar 

  121. J. Krishna, P.S. Kishore, A.B. Solomon, Heat pipe with nano enhanced-PCM for electronic cooling application. Exp. Therm. Fluid Sci. 81, 84–92 (2017)

    Article  Google Scholar 

  122. M. Itani, N. Ghaddar, K. Ghali, D. Ouahrani, W. Chakroun, Cooling vest with optimized PCM arrangement targeting torso sensitive areas that trigger comfort when cooled for improving human comfort in hot conditions. Energy Build. 139, 417–425 (2017)

    Article  Google Scholar 

  123. Y. Yusufoglu, T. Apaydin, S. Yilmaz, H.O. Paksoy, Improving performance of household refrigerators by incorporating phase change materials. Int. J. Refrig. 57, 173–185 (2015)

    Article  Google Scholar 

  124. S. Bakhshipour, M.S. Valipour, Y. Pahamli, Parametric analysis of domestic refrigerators using PCM heat exchanger. Int. J. Refrig. 83, 1–13 (2017)

    Article  Google Scholar 

  125. N. Chaiyat, Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energy Convers. Manag. 94, 150–158 (2015)

    Article  Google Scholar 

  126. M.A. Said, H. Hassan, Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit. Energy Convers. Manag. 171, 903–916 (2018)

    Article  Google Scholar 

  127. M. Alimohammadi, Y. Aghli, E.S. Alavi, M. Sardarabadi, M. Passandideh-Fard, Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection. Appl. Therm. Eng. 111, 271–279 (2017)

    Article  Google Scholar 

  128. B. Praveen, S. Suresh, Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Eng. Sci. Technol. An Int. J. 21, 1086–1094 (2018)

    Article  Google Scholar 

  129. Z. Huang, N. Xie, X. Zheng, X. Gao, X. Fang, Y. Fang, Z. Zhang, Experimental and numerical study on thermal performance of Wood’s alloy/expanded graphite composite phase change material for temperature control of electronic devices. Int. J. Therm. Sci. 135, 375–385 (2019)

    Article  Google Scholar 

  130. A. Farzanehnia, M. Khatibi, M. Sardarabadi, M. Passandideh-Fard, Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers. Manag. 179, 314–325 (2019)

    Article  Google Scholar 

  131. B. Praveen, S. Suresh, V. Pethurajan, Heat transfer performance of graphene nano-platelets laden micro-encapsulated PCM with polymer shell for thermal energy storage based heat sink. Appl. Therm. Eng. 156, 237–249 (2019)

    Article  Google Scholar 

  132. P.M. Congedo, M. Malvoni, M. Mele, M.G. De Giorgi, Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 68, 1–10 (2013). https://doi.org/10.1016/j.enconman.2012.12.017

    Article  Google Scholar 

  133. M. Chandrasekar, S. Suresh, T. Senthilkumar, M. Ganesh Karthikeyan, Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers. Manag. 71, 43–50 (2013). https://doi.org/10.1016/j.enconman.2013.03.012

  134. a Q. Malik, M. Fauzi, Performance of single crystal silicon photovoltaic module in Bruneian Climate, pp. 179–188 (2010)

    Google Scholar 

  135. H. Jiang, L. Lu, K. Sun, Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 45, 4299–4304 (2011). https://doi.org/10.1016/j.atmosenv.2011.04.084

    Article  Google Scholar 

  136. D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)

    Article  Google Scholar 

  137. S.R. Kurtz, Opportunities and challenges for development of a mature concentrating photovoltaic power industry (2009)

    Google Scholar 

  138. A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering (Wiley, 2011)

    Google Scholar 

  139. P. Huen, W.A. Daoud, Advances in hybrid solar photovoltaic and thermoelectric generators. Renew. Sustain. Energy Rev. 72, 1295–1302 (2017)

    Article  Google Scholar 

  140. P.G.V. Sampaio, M.O.A. González, R.M. de Vasconcelos, M.A.T. dos Santos, J.C. de Toledo, J.P.P. Pereira, Photovoltaic technologies: mapping from patent analysis. Renew. Sustain. Energy Rev. 93, 215–224 (2018)

    Article  Google Scholar 

  141. K. Agroui, A.H. Arab, M. Pellegrino, Indoor and outdoor photovoltaic modules Performances based on thin films solar cells 14, 469–480 (2011)

    Google Scholar 

  142. J.Y. Ye, K. Ding, T. Reindl, A.G. Aberle, Outdoor PV module performance under fluctuating irradiance conditions in tropical climates. Energy Procedia 33, 238–247 (2013). https://doi.org/10.1016/j.egypro.2013.05.064

    Article  Google Scholar 

  143. L.S. Pantić, T.M. Pavlović, D.D. Milosavuević, A practical field study of performances of solar modules at various positions in Serbia. Therm. Sci. 19, S511–S523 (2015). https://doi.org/10.2298/TSCI140313081P

    Article  Google Scholar 

  144. M.E. Başoʇlu, A. Kazdaloʇlu, T. Erfidan, M.Z. Bilgin, B. Cąkir, Performance analyzes of different photovoltaic module technologies under ̄zmit, Kocaeli climatic conditions. Renew. Sustain. Energy Rev. 52, 357–365 (2015). https://doi.org/10.1016/j.rser.2015.07.108

    Article  Google Scholar 

  145. R. Eke, H. Demircan, Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey. Energy Convers. Manag. 65, 580–586 (2013). https://doi.org/10.1016/j.enconman.2012.09.007

    Article  Google Scholar 

  146. C. Cañete, J. Carretero, M. Sidrach-de-Cardona, Energy performance of different photovoltaic module technologies under outdoor conditions. Energy 65, 295–302 (2014). https://doi.org/10.1016/j.energy.2013.12.013

    Article  Google Scholar 

  147. M.R. Abdelkader, F. Sharaf, A comparative Analysis of the Performance of Monocrystalline and Multiycrystalline PV Cells in Semi Arid Climate Conditions : the Case of Jordan. Jordan J. Mech. Ind. Eng. 4, 543–552 (2010)

    Google Scholar 

  148. N. Amin, C.W. Lung, K. Sopian, A practical field study of various solar cells on their performance in Malaysia. Renew. Energy 34, 1939–1946 (2009). https://doi.org/10.1016/j.renene.2008.12.005

    Article  Google Scholar 

  149. O.M. Midtgard, T.O. Sætre, G. Yordanov, A.G. Imenes, C.L. Nge, A qualitative examination of performance and energy yield of photovoltaic modules in southern Norway. Renew. Energy 35, 1266–1274 (2010). https://doi.org/10.1016/j.renene.2009.12.002

    Article  Google Scholar 

  150. S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Procedia 33, 311–321 (2013). https://doi.org/10.1016/j.egypro.2013.05.072

    Article  Google Scholar 

  151. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009). https://doi.org/10.1016/j.solener.2008.10.008

    Article  Google Scholar 

  152. N. Suwapaet, P. Boonla, The investigation of produced power output during high operating temperature occurrences of monocrystalline and amorphous photovoltaic modules. Energy Procedia 52, 459–465 (2014). https://doi.org/10.1016/j.egypro.2014.07.098

    Article  Google Scholar 

  153. P. Singh, S.N. Singh, M. Lal, M. Husain, Temperature dependence of I-V characteristics and performance parameters of silicon solar cell. Sol. Energy Mater. Sol. Cells. 92, 1611–1616 (2008). https://doi.org/10.1016/j.solmat.2008.07.010

    Article  Google Scholar 

  154. S. Mekhilef, R. Saidur, M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 16, 2920–2925 (2012). https://doi.org/10.1016/j.rser.2012.02.012

    Article  Google Scholar 

  155. B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)

    Article  Google Scholar 

  156. M. Mani, R. Pillai, Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 14, 3124–3131 (2010). https://doi.org/10.1016/j.rser.2010.07.065

    Article  Google Scholar 

  157. M. Fuentes, G. Nofuentes, J. Aguilera, D.L. Talavera, M. Castro, Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates. Sol. Energy 81, 1396–1408 (2007). https://doi.org/10.1016/j.solener.2006.12.008

    Article  Google Scholar 

  158. M. Torres-Ramírez, G. Nofuentes, J.P. Silva, S. Silvestre, J.V. Muñoz, Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates. Energy 73, 731–740 (2014). https://doi.org/10.1016/j.energy.2014.06.077

    Article  Google Scholar 

  159. G. Nofuentes, M. Fuentes, J. Aguilera, J.V. Muñoz, An assessment on simple modeling approaches to the electric behavior of two cis pv modules in a sunny climate. J. Sol. Energy Eng. Trans. ASME 131, 0310131–03101310 (2009). https://doi.org/10.1115/1.3142800

    Article  Google Scholar 

  160. U.K. Mirza, M. Mercedes Maroto-Valer, N. Ahmad, Status and outlook of solar energy use in Pakistan. Renew. Sustain. Energy Rev. 7, 501–514 (2003). https://doi.org/10.1016/j.rser.2003.06.002

  161. I. Ulfat, F. Javed, F.A. Abbasi, F. Kanwal, A. Usman, M. Jahangir, F. Ahmed, Estimation of solar energy potential for Islamabad, Pakistan. Energy Procedia 18, 1496–1500 (2012). https://doi.org/10.1016/j.egypro.2012.05.166

  162. D.B. Richardson, L.D.D. Harvey, Strategies for correlating solar PV array production with electricity demand. Renew. Energy 76, 432–440 (2015). https://doi.org/10.1016/j.renene.2014.11.053

    Article  Google Scholar 

  163. B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011). https://doi.org/10.1016/j.rser.2010.11.032

    Article  Google Scholar 

  164. H.G. Teo, P.S. Lee, M.N.A. Hawlader, An active cooling system for photovoltaic modules. Appl. Energy 90, 309–315 (2012)

    Article  Google Scholar 

  165. D.J. Yang, Z.F. Yuan, P.H. Lee, H.M. Yin, Simulation and experimental validation of heat transfer in a novel hybrid solar panel. Int. J. Heat Mass Transf. 55, 1076–1082 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.003

    Article  Google Scholar 

  166. A. Makki, S. Omer, H. Sabir, Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew. Sustain. Energy Rev. 41, 658–684 (2015). https://doi.org/10.1016/j.rser.2014.08.069

    Article  Google Scholar 

  167. C. Schwingshackl, M. Petitta, J.E. Wagner, G. Belluardo, D. Moser, M. Castelli, M. Zebisch, A. Tetzlaff, Wind effect on PV module temperature: analysis of different techniques for an accurate estimation. Energy Procedia 40, 77–86 (2013). https://doi.org/10.1016/j.egypro.2013.08.010

    Article  Google Scholar 

  168. E. Kermani, Manifold micro-channel cooling of photovoltaic cells for high efficiency solar energy conversion systems (2008)

    Google Scholar 

  169. M.M. Rahman, M. Hasanuzzaman, N.A. Rahim, Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 103, 348–358 (2015)

    Article  Google Scholar 

  170. O. Dupré, R. Vaillon, M.A. Green, Physics of the temperature coefficients of solar cells. Sol. Energy Mater. Sol. Cells. 140, 92–100 (2015)

    Article  Google Scholar 

  171. J.W. Stultz, L.C. Wen, Thermal performance testing and analysis of photovoltaic modules in natural sunlight. LSA Task Rep. 5101, 31 (1977)

    Google Scholar 

  172. A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84, 1601–1612 (2010)

    Article  Google Scholar 

  173. C.J. Smith, P.M. Forster, R. Crook, Global analysis of photovoltaic energy output enhanced by phase change material cooling. Appl. Energy 126, 21–28 (2014)

    Article  Google Scholar 

  174. U. Stritih, Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 97, 671–679 (2016)

    Article  Google Scholar 

  175. S. Maiti, S. Banerjee, K. Vyas, P. Patel, P.K. Ghosh, Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol. Energy 85, 1805–1816 (2011)

    Article  Google Scholar 

  176. P.H. Biwole, P. Eclache, F. Kuznik, Phase-change materials to improve solar panel’s performance. Energy Build. 62, 59–67 (2013)

    Article  Google Scholar 

  177. M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells. 95, 1598–1603 (2011)

    Article  Google Scholar 

  178. M.C. Browne, K. Lawlor, A. Kelly, B. Norton, S.J. Mc Cormack, Indoor characterisation of a photovoltaic/thermal phase change material system. Energy Procedia. 70, 163–171 (2015)

    Google Scholar 

  179. M.C. Browne, B. Norton, S.J. McCormack, Phase change materials for photovoltaic thermal management. Renew. Sustain. Energy Rev. 47, 762–782 (2015)

    Article  Google Scholar 

  180. P. Atkin, M.M. Farid, Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol. Energy. 114, 217–228 (2015)

    Article  Google Scholar 

  181. A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers. Manag. 151, 693–708 (2017)

    Article  Google Scholar 

  182. M.K.A. Ali, H. Xianjun, L. Mai, C. Bicheng, R.F. Turkson, C. Qingping, Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear 364, 270–281 (2016)

    Article  Google Scholar 

  183. A.H.A. Al-Waeli, H.A. Kazem, M.T. Chaichan, K. Sopian, Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): technical and economic study. Therm. Sci. Eng. Prog. 11, 213–230 (2019)

    Article  Google Scholar 

  184. N.S. Dhaidan, J.M. Khodadadi, T.A. Al-Hattab, S.M. Al-Mashat, Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int. J. Heat Mass Transf. 67, 455–468 (2013)

    Article  Google Scholar 

  185. D. Groulx, Numerical study of nano-enhanced PCMs: are they worth it? in Proceedings of the 1st Thermal and Fluid Engineering Summer Conference (TFESC), New York, Aug 2015, pp. 9–12

    Google Scholar 

  186. R. Parameshwaran, K. Deepak, R. Saravanan, S. Kalaiselvam, Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl. Energy 115, 320–330 (2014)

    Article  Google Scholar 

  187. M. Amin, N. Putra, E.A. Kosasih, E. Prawiro, R.A. Luanto, T.M.I. Mahlia, Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 112, 273–280 (2017)

    Article  Google Scholar 

  188. Z. Luo, H. Zhang, X. Gao, T. Xu, Y. Fang, Z. Zhang, Fabrication and characterization of form-stable capric-palmitic-stearic acid ternary eutectic mixture/nano-SiO2 composite phase change material. Energy Build. 147, 41–46 (2017)

    Article  Google Scholar 

  189. S. Sharma, L. Micheli, W. Chang, A.A. Tahir, K.S. Reddy, T.K. Mallick, Nano-enhanced phase change material for thermal management of BICPV. Appl. Energy. 208, 719–733 (2017)

    Article  Google Scholar 

  190. Z. Ma, W. Lin, M.I. Sohel, Nano-enhanced phase change materials for improved building performance. Renew. Sustain. Energy Rev. 58, 1256–1268 (2016)

    Article  Google Scholar 

  191. S.C. Lin, H.H. Al-Kayiem, Evaluation of copper nanoparticles—Paraffin wax compositions for solar thermal energy storage. Sol. Energy 132, 267–278 (2016). https://doi.org/10.1016/j.solener.2016.03.004

    Article  Google Scholar 

  192. N. Abdollahi, M. Rahimi, Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling. Renew. Energy 147, 302–309 (2020)

    Article  Google Scholar 

  193. H.E. Abdelrahman, M.H. Wahba, H.A. Refaey, M. Moawad, N.S. Berbish, Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3. Sol. Energy 177, 665–671 (2019)

    Article  Google Scholar 

  194. M. Al-Jethelah, S.H. Tasnim, S. Mahmud, A. Dutta, Nano-PCM filled energy storage system for solar-thermal applications. Renew. Energy 126, 137–155 (2018)

    Article  Google Scholar 

  195. S.Y. Wu, H. Wang, S. Xiao, D.S. Zhu, An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J. Therm. Anal. Calorim. 110, 1127–1131 (2011)

    Article  Google Scholar 

  196. T.-P. Teng, C.-C. Yu, Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res. Lett. 7, 611 (2012)

    Article  Google Scholar 

  197. T. Oya, T. Nomura, M. Tsubota, N. Okinaka, T. Akiyama, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 61, 825–828 (2013)

    Article  Google Scholar 

  198. Q. He, S. Wang, M. Tong, Y. Liu, Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers. Manag. 64, 199–205 (2012)

    Article  Google Scholar 

  199. Y. Zeng, L.-W. Fan, Y.-Q. Xiao, Z.-T. Yu, K.-F. Cen, An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity. Int. J. Heat Mass Transf. 66, 111–117 (2013)

    Article  Google Scholar 

  200. Y. Cui, C. Liu, S. Hu, X. Yu, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol. Energy Mater. Sol. Cells. 95, 1208–1212 (2011)

    Article  Google Scholar 

  201. M. Li, A nano-graphite/paraffin phase change material with high thermal conductivity. Appl. Energy 106, 25–30 (2013)

    Article  Google Scholar 

  202. A.H. Ali, S.I. Ibrahim, Q.A. Jawad, R.S. Jawad, M.T. Chaichan, Effect of nanomaterial addition on the thermos physical properties of Iraqi paraffin wax. Case Stud. Therm. Eng. 100537 (2019)

    Google Scholar 

  203. M. Kazemi, A. Kianifar, H. Niazmand, Nanoparticle loading effect on the performance of the paraffin thermal energy storage material for building applications. J. Therm. Anal. Calorim. 1–7 (n.d.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, H.M., Jamil, F., Babar, H. (2021). Energy Storage Materials in Thermal Storage Applications. In: Thermal Energy Storage . Springer, Singapore. https://doi.org/10.1007/978-981-16-1131-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1131-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1130-8

  • Online ISBN: 978-981-16-1131-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics