Skip to main content

Clinical Potential of Bacteriophage and Endolysin Based Therapeutics: A Futuristic Approach

  • Chapter
  • First Online:
Microbial Products for Health, Environment and Agriculture

Abstract

Antibiotic resistance is a global health challenge in the modern era. The emergence of antibiotic-resistant strains poses a serious threat to human health across the globe and compromises the arsenal of antibiotics upon which the modern healthcare system heavily relies. Antibiotic resistance diminishes the choice for effective antimicrobial agents and forces researchers to look for effective alternative agents. Bacteriophages have been established as potent antibacterial agents against most of the bacterial pathogens since the pre-antibiotic era. Additionally, the discovery and exploration of endolysins, i.e. phage coded peptidoglycan hydrolases, have further revolutionized the field of phage-based therapy. Bacteriophage and endolysin have demonstrated to be effective for clearing the infection in both in vitro and in vivo models. Nevertheless, there is a scarcity of information on the clinical potential of bacteriophage and endolysin. The present chapter will highlight the features of bacteriophage and endolysin that make them attractive and effective long-term therapeutic alternatives for the treatment of drug-resistant infections in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaev I, Foster-Frey J, Korobova O, Shishkova N, Kiseleva N, Kopylov P, Pryamchuk S, Schmelcher M, Becker SC, Donovan DM (2013) Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site. Appl Microbiol Biotechnol 97(8):3449–3456

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST (ed) (2008) Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ackermann HW (2003) Bacteriophage observations and evolution. Res Microbiol 154(4):245–251

    Article  CAS  PubMed  Google Scholar 

  • Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C (2012) Bacteriophages ϕMR299-2 and ϕNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 3(2):e00029–e00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrow P, Lovell M, Berchieri A (1998) Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Vaccine Immunol 5(3):294–298

    CAS  Google Scholar 

  • Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5(7):268–271

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Rawlings ND (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28:234–247

    Article  CAS  PubMed  Google Scholar 

  • Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287(2):185–191

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR (2002) Bacteriophage therapy rescues mice bacteraemia from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70(1):204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P (2016) PL3 amidase, a tailor-made Lysin constructed by domain shuffling with potent killing activity against pneumococci and related species. Front Microbiol 7:1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Braga LP, Soucy SM, Amgarten DE, da Silva AM, Setubal JC (2018) Bacterial diversification in the light of the interactions with phages: the genetic symbionts and their role in ecological speciation. Front Ecol Evol 6:6

    Article  Google Scholar 

  • Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay JP, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, Lavigne R (2014) Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58(7):3774–3784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brüssow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151(7):2133–2140

    Article  PubMed  CAS  Google Scholar 

  • Budynek P, Dabrowska K, Skaradziński G, Górski A (2010) Bacteriophages and cancer. Arch Microbiol 192(5):315–320

    Article  CAS  PubMed  Google Scholar 

  • Bustamante N, Campillo NE, García E, Gallego C, Pera B, Diakun GP, Sáiz JL, García P, Díaz JF, Menéndez M (2010) Cpl-7, a lysozyme encoded by a pneumococcal bacteriophage with a novel cell wall-binding motif. J Biol Chem 285(43):33184–33196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Wang X, Wang L, Li Z, Che J, Wang L, Li X, Cao Z, Zhang J, Jin L, Xu Y (2015) Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed Res Int 2015:752930

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassino C, Murphy M, Boyle J, Rotolo J, Wittekind M (2016) Results of the first in human study of lysin CF-301 evaluating the safety, tolerability and pharmacokinetic profile in healthy volunteers; Proceedings of the 26th European Congress of Clinical Microbiology and Infectious Diseases; Amsterdam, The Netherlands. 9–12 April 2016

    Google Scholar 

  • Chadha P, Katare OP, Chhibber S (2017) Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43(7):1532–1543

    Article  PubMed  Google Scholar 

  • Channabasappa S, Durgaiah M, Chikkamadaiah R, Kumar S, Joshi A, Sriram B (2018) Efficacy of novel antistaphylococcal ectolysin P128 in a rat model of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 62(2):e01358–e01317

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Nelson D, Zhu S, Fischetti VA (2005) Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 49(1):111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhibber S, Gondil VS, Kaur J (2018) Isolation, characterization, statistical optimization, and application of a novel broad-spectrum capsular depolymerase against Klebsiella pneumoniae from Bacillus siamensis SCVJ30. Biomed Biotechnol Res J 2(2):125

    Article  Google Scholar 

  • Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H (2004) In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother 48(7):2558–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra S, Harjai K, Chhibber S (2015) Potential of sequential treatment with minocycline and S. aureus specific phage lysin in eradication of MRSA biofilms: an in vitro study. Appl Microbiol Biotechnol 99(7):3201–3210

    Article  CAS  PubMed  Google Scholar 

  • Corsini B, Díez-Martínez R, Aguinagalde L, González-Camacho F, García-Fernández E, Letrado P, García P, Yuste J (2018) Chemotherapy with phage lysins reduces pneumococcal colonization of the respiratory tract. Antimicrob Agents Chemother 62(6):e02212–e02217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallal MM, Nikkhahi F, Alimohammadi M, Douraghi M, Rajabi Z, Foroushani AR, Azimi A, Fardsanei F (2019) Phage therapy as an approach to control Salmonella enterica serotype Enteritidis infection in mice. Rev Soc Bras Med Trop 52:e20190290

    Article  PubMed  Google Scholar 

  • Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201(7):1096–1104

    Article  CAS  PubMed  Google Scholar 

  • Divya Ganeshan S, Hosseinidoust Z (2019) Phage therapy with a focus on the human microbiota. Antibiotics 8(3):131

    Article  PubMed Central  CAS  Google Scholar 

  • Domenech M, García E, Moscoso M (2011) In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother 55:4144–4148

    Article  CAS  PubMed  Google Scholar 

  • Domingo-Calap P, Delgado-Martínez J (2018) Bacteriophages: protagonists of a post-antibiotic era. Antibiotics 7(3):66

    Article  CAS  Google Scholar 

  • Donovan DM, Foster-Frey J (2008) LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 287(1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Dorval Courchesne NM, Parisien A, Lan CQ (2009) Production and application of bacteriophage and bacteriophage-encoded lysins. Recent pat biotechnol 3(1):37–45

    Google Scholar 

  • Dufour N, Debarbieux L, Fromentin M, Ricard JD (2015) Treatment of highly virulent extraintestinal pathogenic Escherichia coli pneumonia with bacteriophages. Crit Care Med 43(6):e190–e198

    Article  CAS  PubMed  Google Scholar 

  • Fenton M, Keary R, McAuliffe O, Ross RP, O'Mahony J, Coffey A (2013) Bacteriophage-derived peptidase eliminates and prevents staphylococcal biofilms. Int J Microbiol 2013:625341

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato SI, Morita T, Muraoka A, Sumi T, Matsuzaki S, Daibata M, Fukushima A (2012) Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PloS One 7(10):e47742

    Article  CAS  PubMed  Google Scholar 

  • Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8:376

    Article  CAS  PubMed  Google Scholar 

  • Ghannad MS, Mohammadi A (2012) Bacteriophage: time to re-evaluate the potential of phage therapy as a promising agent to control multidrug-resistant bacteria. Iran J Basic Med Sci 15(2):693

    CAS  Google Scholar 

  • Gil F, Grzegorzewicz AE, Catalao MJ, Vital J, McNeil MR, Pimentel M (2010) Mycobacteriophage Ms6 LysB specifically targets the outer membrane of Mycobacterium smegmatis. Microbiology 156(Pt 5):1497

    Article  CAS  PubMed  Google Scholar 

  • Gilmer DB, Schmitz JE, Thandar M, Euler CW, Fischetti VA (2017) The phage lysin PlySs2 decolonizes Streptococcus suis from murine intranasal mucosa. PLoS One 12(1):e0169180

    Article  PubMed  CAS  Google Scholar 

  • Gondil VS, Asif M, Bhalla TC (2017) Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech 7(5):338

    Article  PubMed  Google Scholar 

  • Gondil VS, Chhibber S (2017) Evading antibody mediated inactivation of bacteriophages using delivery systems. J Immunovirol 1:555–574

    Google Scholar 

  • Gondil VS, Chhibber S (2018) Exploring potential of phage therapy for tuberculosis using model organism. Biomed Biotechnol Res J 2(1):9

    Article  Google Scholar 

  • Gondil VS, Dube T, Panda JJ, Yennamalli RM, Harjai K, Chhibber S (2020a) Comprehensive evaluation of chitosan nanoparticle-based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int J Pharma 573:118850

    Article  CAS  Google Scholar 

  • Gondil VS, Harjai K, Chhibber S (2020b) Endolysins as emerging alternative therapeutic agent to counter drug resistant infections. Int J Antimicrob Agents 55(2):105844

    Google Scholar 

  • Gondil VS, Harjai K, Chhibber S (2021) Investigating the potential of endolysin loaded chitosan nanoparticles in the treatment of pneumococcal pneumonia. J Drug Deliv Sci Technol 61:102142

    Google Scholar 

  • Gondil VS, Kalaiyarasan T, Bharti VK, Chhibber S (2019) Antibiofilm potential of Sea buckthorn silver nanoparticles (SBT@ AgNPs) against Pseudomonas aeruginosa. 3 Biotech 9(11):402

    Article  PubMed  Google Scholar 

  • Górski A, Ważna E, Dąbrowska BW, Dąbrowska K, Świtała-Jeleń K, Międzybrodzki R (2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46(3):313–319

    Article  PubMed  CAS  Google Scholar 

  • Górski A, Weber-Dabrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62(5):511

    Article  PubMed  CAS  Google Scholar 

  • Grover N, Paskaleva EE, Mehta KK, Dordick JS, Kane RS (2014) Growth inhibition of Mycobacterium smegmatis by mycobacteriophage-derived enzymes. Enzym Microb Technol 63:1–6

    Article  CAS  Google Scholar 

  • Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293

    Article  PubMed  Google Scholar 

  • Haddad Kashani H, Fahimi H, Dasteh Goli Y, Moniri R (2017) A novel chimeric endolysin with antibacterial activity against methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 7:290

    Article  PubMed  CAS  Google Scholar 

  • Harhala M, Nelson DC, Miernikiewicz P, Heselpoth RD, Brzezicka B, Majewska J, Linden SB, Shang X, Szymczak A, Lecion D, Marek-Bukowiec K (2018) Safety studies of pneumococcal endolysins Cpl-1 and pal. Viruses 10(11):638

    Article  CAS  Google Scholar 

  • Harper DR (2018) Criteria for selecting suitable infectious diseases for phage therapy. Viruses 10(4):177

    Article  CAS  Google Scholar 

  • Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1:298–303

    Article  CAS  PubMed  Google Scholar 

  • Hemminga MA, Vos WL, Nazarov PV, Koehorst RB, Wolfs CJ, Spruijt RB, Stopar D (2010) Viruses: incredible nanomachines. New advances with filamentous phages. Eur Biophys J 39(4):541–550

    Article  PubMed  Google Scholar 

  • Hietala V, Horsma-Heikkinen J, Carron A, Skurnik M, Kiljunen SJ (2019) The removal of endo-and enterotoxins from bacteriophage preparations. Front Microbiol 10:1674

    Article  PubMed  Google Scholar 

  • Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540

    Article  CAS  PubMed  Google Scholar 

  • Hua Y, Luo T, Yang Y, Dong D, Wang R, Wang Y, Xu M, Guo X, Hu F, He P (2018) Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front Microbiol 8:2659

    Article  PubMed  Google Scholar 

  • Huang G, Shen X, Gong Y, Dong Z, Zhao X, Shen W, Wang J, Hu F, Peng Y (2014) Antibacterial properties of Acinetobacter baumannii phage Abp1 endolysin (PlyAB1). BMC Infect Dis 14(1):681

    Article  PubMed  Google Scholar 

  • Huang L, Luo D, Gondil VS, Gong Y, Jia M, Yan D, He J, Hu S, Yang H, Wei H (2020) Construction and characterization of a chimeric lysin ClyV with improved bactericidal activity against Streptococcus agalactiae in vitro and in vivo. Appl Microbiol Biotechnol 104:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N (2011) Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteraemia in mice. Antimicrob Agents Chemother 55(4):1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 51(4):237–244

    CAS  Google Scholar 

  • Jado I, López R, García E, Fenoll A, Casal J, García P (2003) Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52(6):967–73

    Google Scholar 

  • Jun SY, Jang IJ, Yoon S, Jang K, Yu KS, Cho JY, Seong MW, Jung GM, Yoon SJ, Kang SH (2017) Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother 61(6):e02629–e02616

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Gondil VS, Chhibber S (2019) A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm 572:118779

    Article  CAS  PubMed  Google Scholar 

  • Khan FM, Gondil VS, Li C, Jiang M, Li J, Yu J, Wei H, Yang H (2021) A novel Acinetobacter baumannii bacteriophage endolysin LysAB54 with high antibacterial activity against multiple Gram-negative microbes. Front cell infect microbiol 11:70

    Google Scholar 

  • Kochetkova VA, Mamontov AS, Moskovtseva RL, Erastova EI, Trofimov EI, Popov MI et al (1989) Phagotherapy of postoperative suppurative-inflammatory complications in patients with neoplasms. Soviet Med 6:23–26

    Google Scholar 

  • Kumar M, Bala R, Gondil VS, Pandey SK, Chhibber S, Jain DV, Sharma RK, Wangoo N (2017) Combating food pathogens using sodium benzoate functionalized silver nanoparticles: synthesis, characterization and antimicrobial evaluation. J Mater Sci 52(14):8568–8575

    Article  CAS  Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2010) Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol 20(5):935–941

    Article  CAS  PubMed  Google Scholar 

  • Kusradze I, Karumidze N, Rigvava S, Dvalidze T, Katsitadze M, Amiranashvili I et al (2016) Characterization and testing the efficiency of Acinetobacter baumannii phage vB-GEC_Ab-M-G7as an antibacterial agent. Front Microbiol 7:1590

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutter E (2008) Phage therapy: bacteriophages as naturally occurring antimicrobials. In: Goldman E, Green LH (eds) Practical handbook of microbiology. CRC Press, Boca Raton, FL, pp 713–730

    Google Scholar 

  • Lai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, Chang KC (2011) Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl Microbiol Biotechnol 90(2):529–539

    Article  CAS  PubMed  Google Scholar 

  • Lai MJ, Liu CC, Jiang SJ, Soo PC, Tu MH, Lee JJ, Chen YH, Chang KC (2015) Antimycobacterial activities of endolysins derived from a mycobacteriophage, BTCU-1. Molecules 20(10):19277–19290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai MJ, Soo PC, Lin NT, Hu A, Chen YJ, Chen LK, Chang KC (2013) Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int J Antimicrob Agents 42(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PloS one 8(3):e60666

    Google Scholar 

  • Larpin Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S (2018) In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS One 13(2):e0192507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazareva EB, Smirnov SV, Khvatov VB, Spiridonova TG, Bitkova EE, Darbeeva OS, Maĭskaia LM, Parfeniuk RL, Men'shikov DD (2001) Efficacy of bacteriophages in complex treatment of patients with burn wounds. Antibiot Chemother 46(1):10–14

    CAS  Google Scholar 

  • Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, Schneider MP, Sartori A, Mehnert U, Bachmann LM, Kessler TM (2017) Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol 17(1):90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Wang S, Nyaruaba R, Liu H, Yang H, Wei H (2021) A highly active chimeric lysin with a calcium-enhanced bactericidal activity against staphylococcus aureus In Vitro and In Vivo. Antibiotics (Basel) 10

    Google Scholar 

  • Ligonenko OV, Borysenko MM, Digtyar II, Ivashchenko DM, Zubakha AB, Chorna IO, Shumeyko IA, Storozhenko OV, Gorb LI, Ligonenko OO (2015) Application of bacteriophages in complex of treatment of a shot-gun wounds of soft tissues in the patients, suffering multiple allergy for antibiotics. Klin Khir 10:65–66

    Google Scholar 

  • Lim JA, Shin H, Heu S, Ryu S (2014) Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. J Microbiol Biotechnol 24(6):803–811

    Article  CAS  PubMed  Google Scholar 

  • Lim JA, Shin H, Kang DH, Ryu S (2012) Characterization of endolysin from a Salmonella typhimurium-infecting bacteriophage SPN1S. Res Microbiol 163(3):233–241

    Article  CAS  PubMed  Google Scholar 

  • Linden SB, Zhang H, Heselpoth RD, Shen Y, Schmelcher M, Eichenseher F, Nelson DC (2015) Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 99(2):741–752

    Article  CAS  PubMed  Google Scholar 

  • Loeffler JM, Djurkovic S, Fischetti VA (2003) Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71(11):6199–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner MJ, Kramer K, Ebel F, Scherer S (2002) C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44:335–349

    Article  CAS  PubMed  Google Scholar 

  • Lood R, Raz A, Molina H, Euler CW, Fischetti VA (2014) A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother 58(6):3073–3084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA (2015) Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 59(4):1983–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López R, García E, García P, García JL (1997) The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Resist 3:199–211

    Article  PubMed  Google Scholar 

  • Luo D, Huang L, Gondil VS, Zhou W, Yang W, Jia M, Hu S, He J, Yang H, Wei H (2020) A choline-recognizing monomeric lysin, clyJ-3m, shows elevated activity against streptococcus pneumoniae. Antimicrob Agents Chemother 64:e00311–20

    Google Scholar 

  • Lv M, Wang S, Yan G, Sun C, Feng X, Gu J, Han W, Lei L (2015) Genome sequencing and analysis of an Escherichia coli phage vB_EcoM-ep3 with a novel lysin, Lysep3. Virus Genes 50(3):487–497

    Article  CAS  PubMed  Google Scholar 

  • Maciejewska B, Roszniowski B, Espaillat A, Kęsik-Szeloch A, Majkowska-Skrobek G, Kropinski AM, Briers Y, Cava F, Lavigne R, Drulis-Kawa Z (2017) Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 101(2):673–684

    Article  CAS  PubMed  Google Scholar 

  • Manohar P, Nachimuthu R, Lopes BS (2018) The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol 18(1):97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markoishvili K, Tsitlanadze G, Katsarava R, Glenn J, Morris MD Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic show promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41(7):453–458

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ϕMR11. J Infect Dis 187(4):613–624

    Article  CAS  PubMed  Google Scholar 

  • Meladze GD, Mebuke MG, Chkhetia NS, Kiknadze NI, Koguashvili GG, Timoshuk II et al (1982) Efficacy of staphylococcal bacteriophage in treatment of purulent diseases of lungs and pleura. Grudn Khir 1:53–56

    Google Scholar 

  • Merril CR (2008) Interaction of bacteriophages with animals. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 332–352

    Chapter  Google Scholar 

  • Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S (1996) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci 93(8):3188–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PloS One 6(2):e16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno H, Paulo R, da Costa-Issa F, Rajca-Ferreira AK, Pereira MA, Kaneko TM (2013) Native Brazilian plants against nosocomial infections: a critical review on their potential and the antimicrobial methodology. Curr Top Med Chem 13(24):3040–3078

    Article  CAS  Google Scholar 

  • Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group a streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci 98:4107–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson D, Schuch R, Chahales P, Zhu S, Fischetti VA (2006) PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci 103(28):10765–10770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnuma T, Onaga S, Murata K, Taira T, Katoh E (2008) LysM domains from Pteris ryukyuensis chitinase –a stability study and characterization of the chitin-binding site. J Biol Chem 283:5178–5187

    Article  CAS  PubMed  Google Scholar 

  • Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, Kluskens LD, Azeredo J (2014) A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One 9(10):e108376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pabary R, Singh C, Morales S, Bush A, Alshafi K, Bilton D, Alton EW, Smithyman A, Davies JC (2016) Antipseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother 60(2):744–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis-Bleau C, Cloutier I, Lemieux L, Sanschagrin F, Laroche J, Auger M, Garnier A, Levesque RC (2007) Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage φKZ gp144 lytic transglycosylase. FEMS Microbiol Lett 266(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Park J, Yun J, Lim JA, Kang DH, Ryu S (2012) Characterization of an endolysin, LysBPS13, from a Bacillus cereus bacteriophage. FEMS Microbiol Lett 332(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Parracho HM, Burrowes BH, Enright MC, McConville ML, Harper DR (2012) The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genet Med 6:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA (2011) A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and-sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 55(2):738–744

    Article  CAS  PubMed  Google Scholar 

  • Payne RJ, Jansen VA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42(4):315–325

    Article  CAS  PubMed  Google Scholar 

  • Perepanova TS, Darbeeva OS, Kotliarova GA, Kondrat'eva EM, Maĭskaia LM, Malysheva VF, Baĭguzina FA, Grishkova NV (1995) The efficacy of bacteriophage preparations in treating inflammatory urologic diseases. Urol Nefrol 5:14–17

    Google Scholar 

  • Pipiia VI, Eteriia GP, Gotua TP, Volobuev VI, Katsarava VS (1976) Experience with treating complicated forms of abscessing pneumonia in children. Vestnik Khirurgii Imeni i-i-Grekova 117:64–68

    CAS  PubMed  Google Scholar 

  • Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, Bingen E, Bonacorsi S (2012) Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother 56(7):3568–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–243

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Cerrato V, García P, del Prado G, García E, Gracia M, Huelves L, Ponte C, Lopez R, Soriano F (2007) In vitro interactions of LytA, the major pneumococcal autolysin, with two bacteriophage lytic enzymes (Cpl-1 and pal), cefotaxime and moxifloxacin against antibiotic-susceptible and-resistant Streptococcus pneumoniae strains. J Antimicrob Chemother 60(5):1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C (2019) Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics 8(3):138

    Article  CAS  PubMed Central  Google Scholar 

  • Sakandelidze VM (1991) The combined use of specific phages and antibiotics in different infectious allergoses. Vrach Delo 3:60–63

    Google Scholar 

  • Sakandelidze VM, Meĭpariani AN (1974) Use of combined phages in suppurative-inflammatory diseases. Zh Mikrobiol Epidemiol Immunobiol 51(6):135–136

    CAS  PubMed  Google Scholar 

  • São-José C (2018) Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. Antibiotics 7(2):29

    Article  PubMed Central  CAS  Google Scholar 

  • Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, Bourdin G, McCallin S, Ngom-Bru C, Neville T, Akter M (2016) Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage φ11 and φ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73(1):347–352

    Article  CAS  PubMed  Google Scholar 

  • Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Szentes N, Horváth M, Dorn Á, Cox A, Nagy G, Doffkay Z, Maróti G, Rákhely G, Kovács T (2018) Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1. Biomed Res Int 2018:7569645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M (2017) Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother 61(7):e02666–e02616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884

    Article  CAS  PubMed  Google Scholar 

  • Shapiro OH, Kushmaro A (2011) Bacteriophage ecology in environmental biotechnology processes. Curr Opin Biotechnol 22(3):449–455

    Article  CAS  PubMed  Google Scholar 

  • Shavrina MS, Zimin AA, Molochkov NV, Chernyshov SV, Machulin AV, Mikoulinskaia GV (2016) In vitro study of the antibacterial effect of the bacteriophage T5 thermostable endolysin on Escherichia coli cells. J Appl Microbiol 121(5):1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Donovan DM, Kumar A (2014) Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother 58(8):4621–4629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singla S, Harjai K, Katare OP, Chhibber S (2016) Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One 11(4):e0153777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiology 128(2):307–318

    Article  CAS  Google Scholar 

  • Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37(4):258–261

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze A (2005) Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug discov today 12(10):807–809

    Google Scholar 

  • Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, FL, pp 381–436

    Google Scholar 

  • Sulakvelidze A, Morris JG (2001) Bacteriophages as therapeutic agents. Ann Med 33(8):507–509

    Article  CAS  PubMed  Google Scholar 

  • Sunagar R, Patil SA, Chandrakanth RK (2010) Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol 161(10):854–860

    Article  PubMed  Google Scholar 

  • Takemura-Uchiyama I, Uchiyama J, Osanai M, Morimoto N, Asagiri T, Ujihara T, Daibata M, Sugiura T, Matsuzaki S (2014) Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect 16(6):512–517

    Article  CAS  PubMed  Google Scholar 

  • Tammelin A (1992) Staphylococcus aureus surgical wound infection; possibility of preventing wound infection by use of bacteriophages. Nature 22:26–31

    Google Scholar 

  • Tang SS, Biswas SK, Tan WS, Saha AK, Leo BF (2019) Efficacy and potential of phage therapy against multidrug resistant Shigella spp. PeerJ 7:e6225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thummeepak R, Kitti T, Kunthalert D, Sitthisak S (2016) Enhanced antibacterial activity of Acinetobacter baumannii bacteriophage ØABP-01 endolysin (LysABP-01) in combination with colistin. Front Microbiol 7:1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkhilaishvili T, Winkler T, Müller M, Perka C, Trampuz A (2019) Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 64(1):e00924

    Article  PubMed  PubMed Central  Google Scholar 

  • Tóthová Ľ, Celec P, Bábíčková J, Gajdošová J, Al-Alami H, Kamodyova N, Drahovska H, Liptakova A, Turňa J, Hodosy J (2011) Phage therapy of Cronobacter-induced urinary tract infection in mice. Med Sci Monitor: Int Med J Exp Clin Res 17(7):BR173

    Article  Google Scholar 

  • Totté J, de Wit J, Pardo L, Schuren F, van Doorn M, Pasmans S (2017) Targeted anti-staphylococcal therapy with endolysins in atopic dermatitis and the effect on steroid use, disease severity and the microbiome: Study protocol for a randomized controlled trial (MAAS trial). Trials 18:404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ujmajuridze A, Chanishvili N, Goderdzishvili M, Leitner L, Mehnert U, Chkhotua A, Kessler TM, Sybesma W (2018) Adapted bacteriophages for treating urinary tract infections. Front Microbiol 9:1832

    Article  PubMed  Google Scholar 

  • Vázquez R, Domenech M, Iglesias-Bexiga M, Menéndez M, García P (2017) Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen. Sci Rep 7(1):1–3

    Article  CAS  Google Scholar 

  • Vinodkumar CS, Kalsurmath S, Neelagund YF (2008) Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51(3):360

    Article  CAS  PubMed  Google Scholar 

  • Vinodkumar CS, Neelagund YF, Kalsurmath S (2005) Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J Commun Dis 37(1):18–29

    CAS  PubMed  Google Scholar 

  • Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R (2013) Characterization of five novel endolysins from gram-negative infecting bacteriophages. Appl Microbiol Biotechnol 97(10):4369–4375

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, Sun Z, Reed E, Ding L, Gong J, Li QQ (2006a) Use of bacteriophage in the treatment of experimental animal bacteraemia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med 17(2):309–317

    PubMed  Google Scholar 

  • Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, Sun Z, Tao D, Ding L, Reed E, Gong J (2006b) Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteraemia. Int J Mol Med 17(2):347–355

    PubMed  Google Scholar 

  • Wang S, Gu J, Lv M, Guo Z, Yan G, Yu L, Du C, Feng X, Han W, Sun C, Lei L (2017) The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. J Microbiol 55(5):403–408

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Tomizaki KY, Takahashi T, Usui K, Kajikawa K, Mihara H (2007) Interactions between peptides containing nucleobase amino acids and T7 phages displaying S. cerevisiae proteins. Pept Sci: Original Res Biomol 88(2):131–140

    Article  CAS  Google Scholar 

  • Wills QF, Kerrigan C, Soothill JS (2005) Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 49(3):1220–1221

    Google Scholar 

  • Witzenrath M, Schmeck B, Doehn JM, Tschernig T, Zahlten J, Loeffler JM (2009) Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit Care Med 37:642–649

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Hawkins CH, Änggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y (2019) A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front Microbiol 9:3302

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan G, Liu J, Ma Q, Zhu R, Guo Z, Gao C, Wang S, Yu L, Gu J, Hu D, Han W (2017) The N-terminal and central domain of colicin a enables phage lysin to lyse Escherichia coli extracellularly. Antonie Van Leeuwenhoek 110(12):1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gong Y, Zhang H, Etobayeva I, Miernikiewicz P, Luo D, Li X, Zhang X, Dąbrowska K, Nelson DC, He J (2019) ClyJ is a novel pneumococcal chimeric lysin with a cysteine-and histidine-dependent amidohydrolase/peptidase catalytic domain. Antimicrob Agents Chemother 63(4):e02043–e02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H (2015) A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep 5:17257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Luo D, Etobayeva I, Li X, Gong Y, Wang S, Li Q, Xu P, Yin W, He J, Nelson DC (2020) Linker editing of pneumococcal lysin ClyJ conveys improved bactericidal activity. Antimicrob Agents Chemoter 64(2):e01610

    Article  CAS  Google Scholar 

  • Yang H, Yu J, Wei H (2014c) Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol 5:542

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang H, Wang J, Yu J, Wei H (2017) A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Sci Rep 7(1):1–3

    CAS  Google Scholar 

  • Yang H, Zhang Y, Huang Y, Yu J, Wei H (2014b) Degradation of methicillin-resistant Staphylococcus aureus biofilms using a chimeric lysin. Biofouling 30(6):667–674

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhang Y, Yu J, Huang Y, Zhang XE, Wei H (2014a) Novel chimeric lysin with high-level antimicrobial activity against methicillin-resistant Staphylococcus aureus in vitro and in vivo. Antimicrob Agents Chemother 58(1):536–542

    Article  PubMed  CAS  Google Scholar 

  • Yen M, Cairns LS, Camilli A (2017) A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 8(1):1–7

    Article  CAS  Google Scholar 

  • Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. JBJS 95(2):117–125

    Article  Google Scholar 

  • Zhang J, Xu LL, Gan D, Zhang X (2018) In vitro study of bacteriophage AB3 Endolysin LysAB3 activity against Acinetobacter baumannii biofilm and biofilm-Bound a. baumannii. Clin Lab 64(6):1021–1030

    CAS  PubMed  Google Scholar 

  • Zhang L, Li D, Li X, Hu L, Cheng M, Xia F, Gong P, Wang B, Ge J, Zhang H, Cai R (2016) LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation. Sci Rep 6(1):1–9

    CAS  Google Scholar 

  • Zhukov-Verezhnikov NN, Peremitina LD, Berillo EA, Komissarov VP, Bardymov VM (1978) Therapeutic effect of bacteriophage preparations in the complex treatment of suppurative surgical diseases. Sov Med 12:64–66

    Google Scholar 

  • Zimecki M, Artym J, Kocięba M, Weber-Dąbrowska B, Borysowski J, Górski A (2010) Prophylactic effect of bacteriophages on mice subjected to chemotherapy-induced immunosuppression and bone marrow transplant upon infection with Staphylococcus aureus. Med Microbiol Immunol 199(2):71–79

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gondil, V.S. et al. (2021). Clinical Potential of Bacteriophage and Endolysin Based Therapeutics: A Futuristic Approach. In: Arora, P.K. (eds) Microbial Products for Health, Environment and Agriculture . Microorganisms for Sustainability, vol 31. Springer, Singapore. https://doi.org/10.1007/978-981-16-1947-2_3

Download citation

Publish with us

Policies and ethics