Skip to main content

Applications of Microbes in Soil Health Maintenance for Agricultural Applications

  • Chapter
  • First Online:
Application of Microbes in Environmental and Microbial Biotechnology

Abstract

Agriculture is integral to the world economy and as a means to feed the world populace. The priorities can be multipronged including to overcome famine and eradicate poverty; for economic diversification, industrialization, and investments; and to ensure sustainable resource utilization and environmental management. The excessive utilization of chemical fertilizers, though managed to improve the yield, also kills the pests, weeds, and microflora, with destructive impact on the natural ecosystem. Plant-associated microbes have great potentials to assist in enhancing the yield and plant resilience against pests and diseases. Genetic technology using microorganisms and their metabolites has been applied to increase the nutrient uptake and productivity and control plant stresses and responses to pests. Microbiological tools could enhance environmental health and promote agricultural sustainability. However, the side effects of microbial residents and contaminants must be addressed. This chapter discusses the functions and contributions of microorganisms in promoting health and fertility of soil. Different types of microbial sources and strains are highlighted. The use of natural and biological-based fertilizers, pesticides, herbicides, and insecticides in agriculture is elaborated. The importance of microbiome for sustainable agriculture and soil and environmental health is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BI:

BioDesign Institute

CEB:

Center for Environmental Biotechnology

ISR:

Induction of Systemic Resistance

References

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47. https://doi.org/10.1016/S0929-1393(00)00070-6

    Google Scholar 

  • Abbaspoor A, Zabihi H, Movafegh S, Hossein M, Akbari, Akbari Asl MH (2009) The efficiency of Plant Growth Promoting Rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am-Eurasian J Sustain Agric 3:824–828

    Google Scholar 

  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2019) Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 39(8):981–998. https://doi.org/10.1080/07388551.2019.1654972

    Google Scholar 

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39(9):1216–1232. https://doi.org/10.1080/01904167.2016.1148723

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Google Scholar 

  • Ahmed Nouh F (2019) Endophytic fungi for sustainable agriculture. Microb Biosyst 4:31–44. https://doi.org/10.21608/MB.2019.38886

    Google Scholar 

  • Aislabie J, Deslippe J, Dymond J (2013) Soil microbes and their contribution to soil services. In: Ecosystem services in New Zealand: conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246. https://doi.org/10.1080/17429145.2010.545147

    CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167. https://doi.org/10.1016/j.plaphy.2014.04.003

    CAS  Google Scholar 

  • Alvarez M, Sueldo R, Barassi CJCRC (1996) Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress, pp 101–107

    Google Scholar 

  • Andrews M, Hodge S, Raven JA (2010) Positive plant microbial interactions. 157(3):317–320. https://doi.org/10.1111/j.1744-7348.2010.00440.x

  • Arnold AE, Lamit LJ, Gehring CA, Bidartondo MI, Callahan H (2010) Interwoven branches of the plant and fungal trees of life. New Phytol 185(4):874–878

    CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205. https://doi.org/10.1007/s11274-010-0444-1

    CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40(3):157–162. https://doi.org/10.1007/s00374-004-0766-y

    CAS  Google Scholar 

  • Atapattu SS, Kodituwakku DC (2009) Agriculture in South Asia and its implications on downstream health and sustainability: a review. Agric Water Manag 96(3):361–373. https://doi.org/10.1016/j.agwat.2008.09.028

    Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11(3):566–576. https://doi.org/10.1111/j.1462-2920.2008.01809.x

    CAS  Google Scholar 

  • Bagali S (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52. https://doi.org/10.5829/idosi.ijmr.2012.3.1.61103

    Google Scholar 

  • Bagyaraj D, Revanna A (2017) Soil biodiversity: role in sustainable horticulture. In: Peter KV (ed) Biodiversity in horticultural crops, vol 5. Daya Publishing House, New Delhi, pp 1–18

    Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32(1):78–91. https://doi.org/10.1016/S0141-0229(02)00245-4

    CAS  Google Scholar 

  • Bar-On Y, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci U S A 115:201711842. https://doi.org/10.1073/pnas.1711842115

    CAS  Google Scholar 

  • Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA (2016) Formulation of bacterial consortia from avocado (Persea americana mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91. https://doi.org/10.1016/j.apsoil.2016.02.014

    Google Scholar 

  • Basak B, Biswas D (2008) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255. https://doi.org/10.1007/s11104-008-9805-z

    CAS  Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141. https://doi.org/10.1016/j.scienta.2015.03.002

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    CAS  Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperate region soils. In: Munson RD (ed) Potassium in agriculture. Wiley Online Library, pp 129–162. https://doi.org/10.2134/1985.potassium.c7

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. https://doi.org/10.1186/1475-2859-13-66

    Google Scholar 

  • Bhise KK, Bhagwat PK, Dandge PB (2017) Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech 7(2):105. https://doi.org/10.1007/s13205-017-0739-0

    Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149. https://doi.org/10.1023/A:1024152126541

    CAS  Google Scholar 

  • Buss EA, Park-Brown SG (2002) Natural products for insect pest management. J UF/IFAS Publication ENY-350 URL: http://edis.ifas.ufl.edu/IN197

  • Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH (2005) Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic antioxidant responses in Morinda elliptica. Enzym Microb Technol 36:469–477

    CAS  Google Scholar 

  • Choudhary D, Johri B, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592. https://doi.org/10.1104/pp.108.130369

    CAS  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O'Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. 23(2):95–106. https://doi.org/10.1111/j.1574-6941.1997.tb00394.x

  • Curtis TP, Sloan WT (2005) Exploring microbial diversity—a vast below. Science 309(5739):1331–1333. https://doi.org/10.1126/science.1118176

    CAS  Google Scholar 

  • Damjanovic K, Blackall LL, Webster NS, van Oppen MJH (2017) The contribution of microbial biotechnology to mitigating coral reef degradation. 10(5):1236-1243. doi:https://doi.org/10.1111/1751-7915.12769

  • Dawidziuk A, Popiel D, Kaczmarek J, Strakowska J, Jedryczka M (2016) Optimal Trichoderma strains for control of stem canker of brassicas: molecular basis of biocontrol properties and azole resistance. BioControl 61(6):755–768. https://doi.org/10.1007/s10526-016-9743-2

    CAS  Google Scholar 

  • De Vero L, Boniotti MB, Budroni M, Buzzini P, Cassanelli S, Comunian R, Gullo M, Logrieco AF, Mannazzu I, Musumeci R, Perugini I, Perrone G, Pulvirenti A, Romano P, Turchetti B, Varese GC (2019) Preservation, characterization and exploitation of microbial biodiversity: the perspective of the Italian network of culture collections. Microorganisms 7(12). https://doi.org/10.3390/microorganisms7120685

  • Demain AL (2000) Microbial biotechnology. Trends Biotechnol 18(1):26–31. https://doi.org/10.1016/S0167-7799(99)01400-6

    CAS  Google Scholar 

  • de Mulé MCZ, de Caire GZ, de Cano MS, Palma RM, Colombo K (1999) Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Commun Soil Sci Plant Anal 30(1–2):97–107. https://doi.org/10.1080/00103629909370187

    Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33. https://doi.org/10.1016/s0012-8252(00)00011-8

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571. https://doi.org/10.1007/s00374-009-0366-y

    Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293. https://doi.org/10.1128/AEM.67.11.5285-5293.2001

    CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411(6839):854–856. https://doi.org/10.1038/35081189

    CAS  Google Scholar 

  • Frac M, Jezierska-Tys S, Yaguchi T (2015) Occurrence, detection, and molecular and metabolic characterization of heat-resistant Fungi in soils and plants and their risk to human health. Adv Agron 132:161–204. https://doi.org/10.1016/bs.agron.2015.02.003

    Google Scholar 

  • Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil. Health 9(707). https://doi.org/10.3389/fmicb.2018.00707

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. https://doi.org/10.1007/s11104-008-9833-8

    CAS  Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural Salterns from Rann of Kutch, Gujarat, India. Genome Announc 5(6). https://doi.org/10.1128/genomeA.01593-16

  • Gardi C, Montanarella L, Arrouays D, Bispo A, Lemanceau P, Jolivet C, Mulder C, Ranjard L, Römbke J, Rutgers M, Menta C (2009) Soil biodiversity monitoring in Europe: ongoing activities and challenges 60(5):807–819. https://doi.org/10.1111/j.1365-2389.2009.01177.x

  • Glick BR (2020) Introduction to plant growth-promoting Bacteria. In: Beneficial plant-bacterial interactions. Springer International Publishing, Cham, pp 1–37. https://doi.org/10.1007/978-3-030-44368-9_1

    Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. 365(1554):2973–2989. https://doi.org/10.1098/rstb.2010.0158

  • Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research Press, Delhi, pp 242–253

    Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28(1):66–76. https://doi.org/10.1016/j.syapm.2004.09.003

    CAS  Google Scholar 

  • Hannula SE, van Veen JA (2016) Primer sets developed for functional genes reveal shifts in functionality of fungal community in soils. Front Microbiol 7:1897–1897. https://doi.org/10.3389/fmicb.2016.01897

    Google Scholar 

  • Hedin L, Brookshire EN, Menge D, Barron A (2005) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635. https://doi.org/10.1146/annurev.ecolsys.37.091305.110246

    Google Scholar 

  • Hemashenpagam N, Selvaraj TJJoeb (2011) Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR's) on medicinal plant Solanum viarum seedlings. 32(5):579–583

    Google Scholar 

  • Hoagland RE (2007) Myrothecium verrucariu fungus: a bioherbicide and strategies to reduce its non-target risks. Allelopathy J 19(1) 179-170-2007 v.2019 no.2001

    Google Scholar 

  • Huang H, Shao N, Wang Y, Luo H, Yang P, Zhou Z, Zhan Z, Yao B (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83(2):249–259. https://doi.org/10.1007/s00253-008-1835-1

    CAS  Google Scholar 

  • Hurek T, Hurek BR (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    CAS  Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth 55(1):119–140. https://doi.org/10.2307/1942528

  • Jacott CN, Charpentier M, Murray JD, Ridout CJ (2020) Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. New Phytol 227(2):343–351. https://doi.org/10.1111/nph.16465

    CAS  Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24(2):109–119. https://doi.org/10.1007/s00572-013-0515-x

    Google Scholar 

  • Jha A, Saxena J, Sharma V (2013) Investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt, and pH. Commun Soil Sci Plant Anal 44(16):2443–2458. https://doi.org/10.1080/00103624.2013.803557

    CAS  Google Scholar 

  • Johansen JE, Binnerup SJ, Kroer N, Mølbak L (2005) Luteibacter rhizovicinus gen. nov., sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizosphere of barley (Hordeum vulgare L.). Int J Syst Evol Microbiol 55(Pt 6):2285–2291. https://doi.org/10.1099/ijs.0.63497-0

    CAS  Google Scholar 

  • Johns C (2017) Living soils: the role of microorganisms in soil health. Fut Direct Int:1–7

    Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:4917256. https://doi.org/10.1155/2019/4917256

    CAS  Google Scholar 

  • Karun N, Sharma B, Sridhar K (2018) Biodiversity of macrofungi in Yenepoya campus, Southwest India. Microb Biosyst 3. https://doi.org/10.21608/mb.2018.12354

  • Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal H (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Biosci 9:68–76. https://doi.org/10.13057/nusbiosci/n090112

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc Lond Ser B Biol Sci 363(1492):685–701. https://doi.org/10.1098/rstb.2007.2178

    CAS  Google Scholar 

  • Knudsen GR (2006) Bacteria, fungi and soil health. In: Idaho Potato Conference. University of Idaho, Moscow, ID

    Google Scholar 

  • Kour D, Rana K, Verma P, Yadav A, Kumar V, Singh D (2017) Biofertilizers: eco-friendly technologies and bioresources for sustainable agriculture. In: Proceeding of international conference on innovative research in engineering science and technology

    Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29(5):641–653

    CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi V, Dhewa TJIJoES (2011) Review on bioremediation of polluted environment: a management tool 1:1079–1093

    Google Scholar 

  • Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29(8):1361–1369. https://doi.org/10.1007/s11274-013-1299-z

    CAS  Google Scholar 

  • Kumar V, Sangwan P, Verma AK, Agrawal S (2014) Molecular and biochemical characteristics of recombinant β-propeller phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Appl Biochem Biotechnol 173(2):646–659. https://doi.org/10.1007/s12010-014-0871-9

    CAS  Google Scholar 

  • Kumar V, Singh D, Sangwan P, Gill PK (2015) Management of environmental phosphorus pollution using phytases: current challenges and future prospects. In: Kaushik G (ed) Applied environmental biotechnology: present scenario and future trends. Springer India, New Delhi, pp 97–114. https://doi.org/10.1007/978-81-322-2123-4_7

    Google Scholar 

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal H (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009

    Google Scholar 

  • Kumar V, Yadav AN, Verma DP, Sangwan P, Saxena A, Kumar K, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98. https://doi.org/10.1016/j.ijbiomac.2017.01.134

  • Kupriyanov AA, Semenov AM, Van Bruggen AHC (2010) Transition of entheropathogenic and saprotrophic bacteria in the niche cycle: animals-excrement-soil-plants-animals. Biol Bull 37(3):263–267. https://doi.org/10.1134/S1062359010030076

    Google Scholar 

  • Lal R (2016) Soil health and carbon management. Food Energy Secur 5(4):212–222. https://doi.org/10.1002/fes3.96

    Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128. https://doi.org/10.1016/j.ecoleng.2013.10.013

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3):139–153. https://doi.org/10.1007/s005720050174

    CAS  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64(2):235–241. https://doi.org/10.1134/S1021443717020078

    CAS  Google Scholar 

  • Li ZP, Han CW, Han FX (2010) Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China. Geoderma 157(3):206–213. https://doi.org/10.1016/j.geoderma.2010.04.015

    CAS  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196. https://doi.org/10.1016/j.scienta.2015.08.043

  • Lottmann J, Heuer H, De Vries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33(1):41–49. https://doi.org/10.1111/j.1574-6941.2000.tb00725.x

    Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92(8). https://doi.org/10.1093/femsec/fiw112

  • Malam Issa O, Défarge C, Trichet J, Valentin C, Rajot JL (2009) Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. Catena 77(1):48–55. https://doi.org/10.1016/j.catena.2008.12.013

    CAS  Google Scholar 

  • Mallavarapu M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut (Barking, Essex : 1987) 109:35–42. https://doi.org/10.1016/S0269-7491(99)00231-6

    Google Scholar 

  • Manjunath M, Kanchan A, Ranjan K, Venkatachalam S, Prasanna R, Ramakrishnan B, Hossain F, Nain L, Shivay YS, Rai AB, Singh B (2016) Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon 2(2):e00066. https://doi.org/10.1016/j.heliyon.2016.e00066

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34. https://doi.org/10.1093/jxb/erh010

    CAS  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479. https://doi.org/10.1371/journal.pone.0048479

    CAS  Google Scholar 

  • Mazid S, Kalita JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1(7):169–178

    Google Scholar 

  • Meena V, Bahadur D, Maurya B, Kumar A, Meena R, Meena S, Verma J (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer India, New Delhi, pp 1–20. https://doi.org/10.1007/978-81-322-2776-2_1

    Google Scholar 

  • Mejía L, Rojas E, Maynard Z, Bael S, Arnold A, Hebbar P, Samuels G, Robbins N, Herre E (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14. https://doi.org/10.1016/j.biocontrol.2008.01.012

    Google Scholar 

  • Mia M, Shamsuddin Z, Wahab Z, Marziah M (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-culture Musa plantlets under nitrogen free hydroponics condition. Aust J Crop Sci 4

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193(7):497–513. https://doi.org/10.1007/s00203-011-0693-x

    CAS  Google Scholar 

  • Mohseni M, Norouzi H, Hamedi J, Roohi A (2013) Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. Int J Mol Cell Med 2(2):64–71

    Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617. https://doi.org/10.1016/j.tim.2015.07.009

    CAS  Google Scholar 

  • Munro RC, Wilson J, Jefwa J, Mbuthia KW (1999) A low-cost method of mycorrhizal inoculation improves growth of Acacia tortilis seedlings in the nursery. For Ecol Manag 113(1):51–56. https://doi.org/10.1016/S0378-1127(98)00414-9

    Google Scholar 

  • Nautiyal C, Srivastava S, Chauhan P, Seem K, Mishra A, Sopory S (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66C:1–9. https://doi.org/10.1016/j.plaphy.2013.01.020

    CAS  Google Scholar 

  • Neeno-Eckwall EC, Schottel JL (1999) Occurrence of antibiotic resistance in the biological control of potato scab disease. Biol Control 16(2):199–208. https://doi.org/10.1006/bcon.1999.0756

    Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49(4):413–422. https://doi.org/10.1016/j.toxicon.2006.11.028

    CAS  Google Scholar 

  • Nkonya E, Mirzabaev A, Von Braun J (2016) Economics of land degradation and improvement–a global assessment for sustainable development. Springer Nature, Switzerland

    Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712. https://doi.org/10.4161/psb.4.8.9047

    Google Scholar 

  • Osman M, El-Sheekh M, El-Naggar A, Gheda S (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875. https://doi.org/10.1007/s00374-010-0491-7

    Google Scholar 

  • Ozdal M, Sezen A, Koc K, Algur Ö (2016) Isolation and characterization of plant growth promoting Rhizobacteria (PGPR) and their effects on improving growth of wheat. J Appl Biol Sci 10:41–46

    Google Scholar 

  • Pandya U, Saraf M (2010) Role of single fungal isolates and consortia as plant growth promoters under saline conditions. Res J Biotechnol 5:5–9

    Google Scholar 

  • Panhwar QA, Radziah O, Zaharah AR, Sariah M, Razi IM (2011) Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. J Environ Biol 32(5):607–612

    CAS  Google Scholar 

  • Parke EL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of douglas-FIR seedlings 95(1):83–95. https://doi.org/10.1111/j.1469-8137.1983.tb03471.x

  • Peay KG, Bidartondo MI, Elizabeth Arnold A (2010) Not every fungus is everywhere: scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. 185(4):878–882. https://doi.org/10.1111/j.1469-8137.2009.03158.x

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5):325–336. https://doi.org/10.1016/j.micres.2013.09.011

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

    CAS  Google Scholar 

  • Piernik A, Hrynkiewicz K, Wojciechowska A, Szymańska S, Lis MI, Muscolo A (2017) Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch Agron Soil Sci 63(10):1404–1418. https://doi.org/10.1080/03650340.2017.1286329

    Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, pp 247–260. https://doi.org/10.1007/978-3-319-13401-7_12

    Google Scholar 

  • Prasanna R, Babu S, Devi N, Kumar A, Sodimalla T, Monga D, Mukherjee A, Kranthi S, Gokte-Narkhedkar N, Adak A, Yadav K, Nain L, Saxena A (2014) Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Exp Agric 51. https://doi.org/10.1017/S0014479714000143

  • Prasanna R, Hossain F, Babu S, Devi N, Adak A, Verma S, Shivay Y, Nain L (2015) Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. S Afr J Plant Soil 32:1–9. https://doi.org/10.1080/02571862.2015.1025444

    Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Resour Crop Evol 50(1):89–99. https://doi.org/10.1023/A:1022957429160

    CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2009) Host plant as an organizer of microbial evolution in the beneficial symbioses. Phytochem Rev 8(3):519. https://doi.org/10.1007/s11101-009-9140-x

    CAS  Google Scholar 

  • Provorov NA, Saimnazarov UB, Bahromov IU, Pulatova DZ, Kozhemyakov AP, Kurbanov GA (1998) Effect of rhizobia inoculation on the seed (herbage) production of mungbean (Phaseolus aureusRoxb.) grown at Uzbekistan. J Arid Environ 39(4):569–575. https://doi.org/10.1006/jare.1998.0379

    Google Scholar 

  • Rahul K, Amrita K, Mukesh S (2014) Trichoderma: a most powerful bio-control agent-a review. J Trends Biosci 7(24):4055–4058

    Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58(5):573–582. https://doi.org/10.1080/00380768.2012.716750

    CAS  Google Scholar 

  • Rana KL, Kour D, Verma DP, Yadav AN, Kumar V, Dhaliwal H (2016) Diversity and biotechno-logical applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of 86th Annual Session of NASI & Symposium on “Science, Technology and Entrepreneurship for Human Welfare in the Himalayan region”, p 80

    Google Scholar 

  • Renuka N, Guldhe A, Prasanna R, Singh P, Bux F (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36. https://doi.org/10.1016/j.biotechadv.2018.04.004

  • Rhodes CJ (2014) Mycoremediation (bioremediation with fungi) – growing mushrooms to clean the earth. Chem Spec Bioavailab 26(3):196–198. https://doi.org/10.3184/095422914X14047407349335

    CAS  Google Scholar 

  • Roberts SC, Shuler ML (1997) Large-scale plant cell culture. Curr Opin Biotechnol 8(2):154–159. https://doi.org/10.1016/S0958-1669(97)80094-8

    CAS  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4):547–559

    CAS  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272. https://doi.org/10.1016/j.apsoil.2012.01.006

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026. https://doi.org/10.1104/pp.103.026583

    CAS  Google Scholar 

  • Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-Bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous Jasmonic acid levels and developmental stages. PLoS One 9(4):e94710. https://doi.org/10.1371/journal.pone.0094710

    CAS  Google Scholar 

  • Satyaprakash M, Sadhana EUB, Vani S (2017) Phosphorous and phosphate solubilising Bacteria and their role in plant nutrition. Int J Curr Microbiol Appl Sci 6:2133–2144. https://doi.org/10.20546/ijcmas.2017.604.251

    CAS  Google Scholar 

  • Scagel CF, Linderman RG (1998) Influence of ectomycorrhizal fungal inoculation on growth and root IAA concentrations of transplanted conifers. Tree Physiol 18:739–747. https://doi.org/10.1093/treephys/18.11.739

    CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60(100):182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

    CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587. https://doi.org/10.1186/2193-1801-2-587

    CAS  Google Scholar 

  • Shtark O, Borisov A, Zhukov V, Provorov N, Tikhonovich I (2010) Intimate associations of beneficial soil microbes with host plants. In: Dixon GR, Tilston EL (eds) Soil microbiology and sustainable crop production. Springer Netherlands, Dordrecht, pp 119–196. https://doi.org/10.1007/978-90-481-9479-7_5

    Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434. https://doi.org/10.1016/j.plaphy.2011.01.015

    CAS  Google Scholar 

  • Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. Microb Biotechnol 10(1):50–53. https://doi.org/10.1111/1751-7915.12592

    Google Scholar 

  • Singh HP, Batish DR, Kohli RK (2006) Handbook of sustainable weed management. CRC Press, Boca Raton, FL

    Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100(4):557–568. https://doi.org/10.1007/s10482-011-9611-0

    CAS  Google Scholar 

  • Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014:426483. https://doi.org/10.1155/2014/426483

    CAS  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11(1):54. https://doi.org/10.1186/s40793-016-0176-4

    CAS  Google Scholar 

  • Singh S, Singh V, Pal K (2017) Importance of micro organisms in agriculture. Clim Environ Change Impact Chall Solut 1:93–117

    Google Scholar 

  • Singh R, Ahirwar N, Tiwari J, Pathak J (2018) Review on sources and effect of heavy metal in soil: its bioremediation. Int J Res Appl Nat Soc Sci 2018:1–22

    CAS  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, Cambridge, MA

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. Wiley Online Library, pp 201–276. https://doi.org/10.2134/1985.potassium.c9

    Google Scholar 

  • Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135(1):47–58. https://doi.org/10.1104/pp.104.038703

    CAS  Google Scholar 

  • Steffens D, Leppin T, Luschin-Ebengreuth N, Min Yang Z, Schubert S (2010) Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil-testing methods. J Plant Nutr Soil Sci 173(5):765–771. https://doi.org/10.1002/jpln.201000079

    CAS  Google Scholar 

  • Suman A, Verma DP, Yadav AN, Srinivasamurthy, Singh A, Prasanna R (2015) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Microb Ecol 5. https://doi.org/10.20546/ijcmas.2016.503.103

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016a) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Int J Curr Microbiol Appl Sci 5(3):890–901

    CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016b) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives, vol 1. Springer India, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Google Scholar 

  • Svircev Z, Tamas I, Nenin P, Drobac A (1997) Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl Soil Ecol 6(3):301–308. https://doi.org/10.1016/S0929-1393(97)00022-X

    Google Scholar 

  • Tanti A (2015) Emergence in mapping microbial diversity in tea (Camellia sinensis (L.) O. Kuntze) soil of Assam, north-East India: a novel approach. Eur J Biotechnol Biosci 3:20–25

    Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity – present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer India, New Delhi, pp 315–325. https://doi.org/10.1007/978-81-322-2776-2_22

    Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412–762412. https://doi.org/10.1155/2013/762412

    CAS  Google Scholar 

  • Thilagar G, Bagyaraj D (2013) Influence of different arbuscular mycorrhizal Fungi on growth and yield of chilly. Proc Natl Acad Sci India Section B Biol Sci 85:71–75. https://doi.org/10.1007/s40011-013-0262-y

    CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907. https://doi.org/10.1007/s00374-011-0598-5

    CAS  Google Scholar 

  • Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262. https://doi.org/10.1128/MMBR.00001-15

  • Turan M, Gulluce M, Şahin F (2012) Effects of plant-growth-promoting Rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Commun Soil Sci Plant Anal 43(12):1658–1673. https://doi.org/10.1080/00103624.2012.681739

    CAS  Google Scholar 

  • Umesha SK, Singh PP, Singh R (2018) Chapter 6: Microbial biotechnology and sustainable agriculture. In: Singh RL, Mondal S (eds) Biotechnology for sustainable agriculture. Woodhead Publishing, Cambridge, England, pp 185–205. https://doi.org/10.1016/B978-0-12-812160-3.00006-4

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30(5):460–468. https://doi.org/10.1007/s003740050024

    CAS  Google Scholar 

  • Verma DP, Yadav AN, Kazy S, Saxena A, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Nat J Life Sci 10:219–227

    Google Scholar 

  • Verma DP, Yadav AN, Kazy S, Saxena A, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol App Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899. https://doi.org/10.1007/s13213-014-1027-4

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58. https://doi.org/10.1002/jobm.201500459

    CAS  Google Scholar 

  • Verma DP, Yadav AN, Kumar V, Khan M, Saxena A (2018) Microbes in termite management: potential role and strategies. In: Khan MA, Ahmad W (eds) Termites and sustainable management: volume 2 - economic losses and management. Springer International Publishing, Cham, pp 197–217. https://doi.org/10.1007/978-3-319-68726-1_9

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26(7):1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111(14):5266–5270. https://doi.org/10.1073/pnas.1320054111

    CAS  Google Scholar 

  • Wang ET, Martínez-Romero E (2000) Sesbania herbacea–rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-Nodulating rhizobia in different environments. Microb Ecol 40(1):25–32. https://doi.org/10.1007/s002480000010

    CAS  Google Scholar 

  • Wang HR, Wang MZ, Yu LH (2009) Effects of dietary protein sources on the rumen microorganisms and fermentation of goats. J Anim Vet Adv 8:1392–1401

    Google Scholar 

  • Wei C-Y, Lin L, Luo L-J, Xing Y-X, Hu C-J, Yang L-T, Li Y-R, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50(4):657–666. https://doi.org/10.1007/s00374-013-0878-3

    CAS  Google Scholar 

  • Weinzierl R, Henn T, Koehler PG, Tucker CL (1995) Microbial Insecticides, University of Florida. http://edis.ifas.ufl.edu (Accessed 12 July 2021)

  • Whitton BA, Grainger SL, Hawley GR, Simon JW (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21(1):85–98. https://doi.org/10.1007/bf02539146

    CAS  Google Scholar 

  • Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q, Wu H, Kowalchuk GA, Shen Q, Li R, Geisen S (2018) Soil protist communities form a dynamic hub in the soil microbiome. ISME J 12(2):634–638. https://doi.org/10.1038/ismej.2017.171

    Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance, PhD Dissertation. IARI New Delhi, India

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    CAS  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015b) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5(1):12293. https://doi.org/10.1038/srep12293

    CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56(3):294–307. https://doi.org/10.1002/jobm.201500230

    CAS  Google Scholar 

  • Yadav AN, Ghosh Sachan S, Verma DP, Saxena A (2016b) Bioprospecting of plant growth promoting psychrotrophic bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan V, Suman A, Saxena AK (2017a) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. J Adv Biotechnol Microbiol 5(5):1–16

    Google Scholar 

  • Yadav AN, Verma DP, Kour D, Rana KL, Kumar V, Singh B, Chauhan V, Sugitha TCK, Saxena A, Dhaliwal H (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. https://doi.org/10.19080/IJESNR.2017.03.555601

    Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan V, Suman A, Saxena AKJABM (2017c) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5(5):1–16

    Google Scholar 

  • Yadav AN, Verma P, Sachan S, Saxena AJEME (2017d) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions 1:48–54

    Google Scholar 

  • Yadav AN, Verma DP, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta V, Saxena A (2018a) Biodiversity of the Genus Penicillium in Different Habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Google Scholar 

  • Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK (2018b) Chapter 15: Microbiome in crops: diversity, distribution, and potential role in crop improvement. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 305–332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

    Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107(6):1519–1532. https://doi.org/10.1007/s10482-015-0445-z

    CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11(13):1621–1639. https://doi.org/10.1101/gad.11.13.1621

    CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4. https://doi.org/10.1016/j.tplants.2008.10.004

    CAS  Google Scholar 

  • Yegorenkova I, Tregubova K, Ignatov V (2013) Paenibacillus polymyxa Rhizobacteria and their synthesized exoglycans in interaction with wheat roots: colonization and root hair deformation. Curr Microbiol:66. https://doi.org/10.1007/s00284-012-0297-y

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (raphanus sativus l.) by plant growth: promoting rhizobacteria. Rom Biotechnol Lett 13:3933–3943

    Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7(4):R34. https://doi.org/10.1186/gb-2006-7-4-r34

    CAS  Google Scholar 

  • Žifčáková L, Větrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18(1):288–301. https://doi.org/10.1111/1462-2920.13026

    CAS  Google Scholar 

  • Živković S, Stojanović S, Ivanović Ž, Gavrilović V, Popović T, Balaž J (2010) Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci 62(3):611–623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid Nazir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, A.A. et al. (2022). Applications of Microbes in Soil Health Maintenance for Agricultural Applications. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Application of Microbes in Environmental and Microbial Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2225-0_12

Download citation

Publish with us

Policies and ethics