Skip to main content

Local Fractional Calculus to Design the Growth System of Covid-19 Using Measure of Non-compactness

  • Chapter
  • First Online:
Book cover Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact

Part of the book series: Infosys Science Foundation Series ((ISFM))

Abstract

In this chapter, we use the concept of local fractional calculus and measure of non-compactness to design the growth system of Covid-19. To achieve this, we establish a fixed point and coupled fixed point theorems for new \(\mu \)-set contraction condition in partially ordered Banach spaces, whose positive cone \(\mathbb {K}\) is normal. We provide adequate examples to validate the epidemic dynamics with graphical presentations. We also use present available data to validate it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghajani, A., Allahyari, R., Mursaleen, M.: A generalization of Darbo’s theorem with application to the solvability of systems of integral equations. J. Comput. Appl. Math. 260, 68–77 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aghajani, A., Banas, J., Sabzali, N.: Some generalizations of Darbofixed point theorem and applications. Bull. Belg. Math. Soc. Simon Stevin 20, 345–358 (2013)

    Article  MathSciNet  Google Scholar 

  3. Akmerov, R., Kamenski, M., Potapov, A., Rodkina, A., Sadovskii, B.: Measures of Noncompactness and Condensing Operators. Birkhauser-Verlag, Basel (1992)

    Book  Google Scholar 

  4. Arab, R.: Some fixed point theorems in generalized Darbo fixed point theorem and the existence of solutions for system of integral equations. J. Korean Math. Soc. 52(1), 125–139 (2015)

    Article  MathSciNet  Google Scholar 

  5. Banaei, Sh., Mursaleen, M., Parvaneh, V.: Some fixed point theorems via measure of noncompactness with applications to differential equations. Comput. Appl. Math. 39, 139 (2020)

    Article  MathSciNet  Google Scholar 

  6. Banas, J., Goebel, K.: Measures of noncompactness in Banach Spaces. LectureNotes in Pure and Applied Mathematics, p. 60. Dekker, New York (1980)

    Google Scholar 

  7. Chanda, A., Ansari, A.H., Dey, L.K., Damjanović, B.: On non-linear contractions via extended CF-simulation functions. Filomat 32(10), 3731–3750 (2018)

    Article  MathSciNet  Google Scholar 

  8. Darbo, G.: Punti uniti in transformazioni a codominio non compatto (Italian). Rend. Sem. Math. Univ. Padova 24, 84–92 (1955)

    MATH  Google Scholar 

  9. Dhage, B.: Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations. J. Differ. Equ. Appl. 2, 155–184 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Dhage, B.: Partially continuous mappings in partially ordered normed linear spaces and applications to functional integral equations. Tamkang J. Math. 45, 397–426 (2014)

    Article  MathSciNet  Google Scholar 

  11. Falset, J.G., Latrach, K.: On Darbo-Sadovskii’s fixed point theorems type for abstract measures of (weak) noncompactness. Bull. Belg. Math. Soc. Simon Stevin 22, 797–812 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Geraghty, M.: On contractive mappings. Proc. Amer. Math. Soc. 40(2), 604–608 (1973)

    Article  MathSciNet  Google Scholar 

  13. Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Mathematics and Its Applications, vol. 373. Kluwer Academic Publishers, Dordrecht, The Netherlands (1996)

    Google Scholar 

  14. Khanehgir, M., Allahyari, R., Mursaleen, M., Kayvanloo H.A.: On infinite system of Caputo fractional differential inclusions with boundary conditions for convex-compact multivalued mappings. Alexandria Eng. J. https://doi.org/10.1016/j.aej.2020.08.030

  15. Kuratowski, K.: Sur les espaces completes. Fund. Math. 15, 301–309 (1930)

    Article  Google Scholar 

  16. Mursaleen, M., Mohiuddine, S.A.: Applications of measures of noncompactness to the infinite system of differential equations in \(l_{p}\) spaces. Nolinear Anal. (TMA) 75, 2111–2115 (2012)

    Article  Google Scholar 

  17. Mursaleen, M., Alotaibi, A.: Infinite system of differential equations in some spaces. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 863483, 20 pages (2012). https://doi.org/10.1155/2012/863483

  18. Mursaleen, M., Rizvi, S.M.H.: Solvability of infinite system of second order differential equations in \(c_0\) and \(\ell _1\) by Meir-Keeler condensing operator. Proc. Amer. Math. Soc. 144(10), 4279–4289 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mursaleen, M., Bilalov, B., Rizvi, S.M.H.: Applications of measures of noncompactness to infinite system of fractional differential equations. Filomat 31(11), 3421–3432 (2017)

    Article  MathSciNet  Google Scholar 

  20. Nashine, H.K., Arab, R.: Existence of solutions to nonlinear functional-integral equations via the measure of noncompactness. J. Fixed Point Theory Appl. 20(6), (2018). https://doi.org/10.1007/s11784-018-0546-1

  21. Nashine, H.K., Arab, R., Agarwal, R.P.: Ali Shole Haghighi, Darbo type fixed and coupled fixed point results and its application to integral equation. Period Math. Hung. 77, 94–107 (2018)

    Article  Google Scholar 

  22. Nashine, H.K., Arab, R., Agarwal, R.P., De la Sen, M.: Positive solutions of fractional integral equations by the technique of measure of noncompactness. J. Inequalities Appl. 2017, 225 (2017)

    Google Scholar 

  23. Nashine, H.K., Ibrahim, R.W.: Monotone solutions of iterative fractional equations found by modified Darbo-type fixed-point theorems. J. Fixed Point Theory Appl. 19(14), 3217–3229 (2017)

    Article  MathSciNet  Google Scholar 

  24. Nashine, H.K., Ibrahim, R.W., Agarwal, R.P.: Moments solution of fractional evolution equation found by new krasnoselskii type fixed point theorems. Fixed Point Theory (2019)

    Google Scholar 

  25. Nashine, H.K., Samet, B.: Fixed point results for mappings satisfying \((\psi, \varphi )\)-weakly contractive conditions in partially orderen metric spaces. Nonlinear Anal. (TMA) 74, 2201–2209 (2011)

    Article  Google Scholar 

  26. Nashine, H.K., Yang, H., Agarwal, R.P.: Fixed point theorems via MNC in ordered Banach space with application to fractional integro-differential evolution equations. Taiwanees J. Math. 22(2), 421–438 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Nashine, H.K., Yang, H., Agarwal, R.P.: Fractional evolution equations with nonlocal conditions in partially ordered Banach space. Carpathian J. Math. 34(3), 379–390 (2018)

    Article  MathSciNet  Google Scholar 

  28. Nieto, J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)

    Article  MathSciNet  Google Scholar 

  29. Nieto, J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta. Math. Sinica, English Series. 23, 2205–2212 (2007)

    Google Scholar 

  30. Pathak, H.K., Rodríguez-López, R.: Existence and approximation of solutions to nonlinear hybrid ordinary differential equations. Appl. Math. Lett. 39, 101–106 (2015)

    Article  MathSciNet  Google Scholar 

  31. Ran, A., Reurings, M.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132, 1435–1443 (2004)

    Article  MathSciNet  Google Scholar 

  32. Samadi, A., Avini, M.M., Mursaleen, M.: Solutions of an infinite system of integral equations of Volterra-Stieltjes type in the sequence spaces \(\ell _p\) (\(1 < p < 1\)) and \(c_0\). AIMS Math. 5(4), 3791–3808 (2020)

    Article  MathSciNet  Google Scholar 

  33. Yang, H., Agarwal, R.P., Nashine, H.K.: Coupled fixed point theorems with applications to fractional evolution equations. Adv. Diff. Equ. 2017, 239 (2017). https://doi.org/10.1186/s13662-017-1279-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, H., Agarwal, R.P., Nashine, H.K., Liang, Y.: Fixed point theorems in partially ordered Banach spaces with applications to nonlinear fractional evolution equations. J. Fixed Point Theory Appl. 19, 1661–1678 (2017)

    Article  MathSciNet  Google Scholar 

  35. Xiao-Jun, Y., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press (2015)

    Google Scholar 

  36. Wu, Joseph T., Cowling, Benjamin J.: The use of mathematical models to inform influenza pandemic preparedness and response. Exp. Biol. Med. 236(8), 955–961 (2011)

    Article  Google Scholar 

  37. https://covid19.who.int/

Download references

Acknowledgements

We are grateful to the learned referee for useful suggestions which helped us to improve the text.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hemant Kumar Nashine or Rabha W. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nashine, H.K., Ibrahim, R.W. (2021). Local Fractional Calculus to Design the Growth System of Covid-19 Using Measure of Non-compactness. In: Agarwal, P., Nieto, J.J., Ruzhansky, M., Torres, D.F.M. (eds) Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact. Infosys Science Foundation Series(). Springer, Singapore. https://doi.org/10.1007/978-981-16-2450-6_20

Download citation

Publish with us

Policies and ethics