Skip to main content

Bioactive Nanoparticles: A Next Generation Smart Nanomaterials for Pollution Abatement and Ecological Sustainability

  • Chapter
  • First Online:
Bio-Nano Interface
  • 731 Accesses

Abstract

The level of environmental pollution is increasing rapidly with increased urbanization and rapid industrialization across the globe. To abate pollution, there is utmost necessity to develop technology that can monitor, detect and clean contaminants from the air, water and soil with higher efficiency. Recently nanotechnology has emerged as a highly effective and reliable technique that offers a wide range of capabilities to improve the quality of existing environment. Due to its large surface area, the nanoparticles adsorb large amount of pollutants at a much faster rate. Nanomaterials can reach to inaccessible areas making in-situ remediation of pollutants effective. Coating of nanomaterials with various ligands provides opportunities to develop sensor with high selectivity and specificity toward pollutants. However, nanomaterials used for pollution abatement can itself cause environmental pollution. There are limited studies exploring the fate of nanomaterials after their end use. Nanotoxicological studies conducted so far indicate damaging impact of nanomaterials in ecological functioning and maintenance of ecosystem integrity. Bioactive nanoparticles on the other hand are biodegradable, have shorter life span and minimal negative impact on environment. Although application of bioactive nanomaterials in environmental pollution abatement is in its infancy, it is gradually gaining wider acceptance in pollution management because of its promising potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Kahn MI, Kumar R et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Technol 37(5):487–496

    Article  CAS  Google Scholar 

  • Bakir EM, Younis NS, Mohamed ME et al (2018) Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16:217

    Article  PubMed Central  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Chang J, Zhang L, Wang P (2018) Intelligent environmental nanomaterials. Environ Sci Nano 5(4):811–836

    Article  CAS  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18

    Article  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49

    Article  CAS  PubMed  Google Scholar 

  • Dobrucka R (2016) Biofabrication of platinum nanoparticles using Fumariae herba extract and their catalytic properties. Saudi J Biol Sci 26:31–37

    Article  PubMed  PubMed Central  Google Scholar 

  • El Golli A, Fendrich M, Bazzanella N, Dridi C, Miotello A, Orlandi M (2021) Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application. J Environ Manage 286:112226

    Article  PubMed  Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Co 28(1):28

    Article  Google Scholar 

  • Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E (2008) Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties. J Phys Chem C 112:10398–10401

    Article  CAS  Google Scholar 

  • Gao C, X-Y Y, Luo T, Jia Y, Sun B, Liu J-H, Huang X-J (2014) Millimeter-sized Mg–Al- LDH nanoflake impregnated magnetic alginate beads (LDH-n-MABs): a novel bio-based sorbent for the removal of fluoride in water. J Mater Chem A 2:2119

    Article  CAS  Google Scholar 

  • Gómez M, Murcia MD, Dams R, Christofi N, Gómez E, Gómez JL (2012) Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods. Environ Technol 33(7–9):1055–1064

    Article  PubMed  Google Scholar 

  • Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cell Nanomed B 47(1):844–885

    Article  CAS  Google Scholar 

  • GrzÄ…bka-ZasadziÅ„ska A, Amietszajew T, Borysiak S (2017) Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. J Therm Anal Calorim 130(1):143–154

    Article  Google Scholar 

  • Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23(7):1760

    Article  PubMed Central  Google Scholar 

  • Guillossou R, Roux JL, Mailler R, Pereira-Derome CS, Varrault G, Bressy A, Vulliet E, Morlay C, Nauleau F, Rocher V et al (2020) Influence of dissolved organic matter on the removal of 12 organic micropollutants from wastewater effluent by powdered activated carbon adsorption. Water Res 172:115487

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Tox 37(3)

    Google Scholar 

  • Gupta R, Kumar AN, Bandhu S, Gupta S (2007) Skeletal fluorosis mimicking seronegative arthritis. Scand J Rheumatol 36(2):154–155

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Deva D, Sharma A, Verma N (2009) Adsorptive removal of fluoride by micronanohierarchalweb of activated carbon fibers. Ind Eng Chem Res 48:9697–9707

    Article  CAS  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J Nanobiotechnol 2(1):12

    Article  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23(14):13754–13788

    Article  CAS  Google Scholar 

  • Jyoti K, Singh A (2016) Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. Biotechnol Genet Eng 14(2):311–317

    Article  Google Scholar 

  • KabdaÅŸlı I, Arslan-Alaton I, Ölmez-Hancı T, Tünay O (2012) Electrocoagulation applications for industrial wastewaters: a critical review. Environ Technol Rev 1(1):2–45

    Article  Google Scholar 

  • Karakoti AS, Munusamy P, Hostetler K, Kodali V, Kuchibhatla S, Orr G et al (2012) Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf Interface Anal 44(8):882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Eng Environ Sci 5(8):8075–8109

    CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna R, Titus E, Krishna R, Bardhan N, Bahadur D, Gracio J (2012) Wet-chemical green synthesis of l-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles. J Nanosci Nanotechnol 12:6645–6651

    Article  CAS  PubMed  Google Scholar 

  • Kuleyin A (2007) Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. J Hazard Mater 144(1–2):307–315

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Paul P, Nataraj SK (2017) Bionanomaterial scaffolds for effective removal of fluoride, chromium, and dye. ACS Sustain Chem Eng 5(1):895–903

    Article  CAS  Google Scholar 

  • Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A et al (2018) Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 92(1):121–141

    Article  CAS  PubMed  Google Scholar 

  • Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726

    Article  PubMed  Google Scholar 

  • Lu W, Shen Y, Xie A, Zhang W (2010) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:1828–1833

    Article  CAS  Google Scholar 

  • Maliyekkal M, Lisha KP, Pradeep T (2010) A novel cellulose–manganese oxide hybridmaterial by in situ soft chemical synthesis and its application for the removal of Pb (II) from water. J Hazard Mater 181:986–995

    Article  CAS  PubMed  Google Scholar 

  • Mir SA, Acharya P, Nayak B (2017) Nanoparticle from biological source: their role in medicine and drug delivery. Int J Creat Res Thoug 6:310–318

    Google Scholar 

  • Mishra RK, Ha SK, Verma K, Tiwari SK (2018) Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J Sci-Adv Mater Dev 3(3):263–288

    Google Scholar 

  • Mohamed EF (2017) Nanotechnology: future of environmental air pollution control. Scanning 6(2)

    Google Scholar 

  • Montero-Montoya R, López-Vargas R, Arellano-Aguilar O (2018) Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann Glob Health 84(2):225

    Article  PubMed  PubMed Central  Google Scholar 

  • National Research Council (NRC), Fluoride in drinking water: a scientific review of EPA’s standards, 2006. Washington, DC

    Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2007) Concepts of nanoparticle dose metric and response metric. Environ Health Perspect 115(6):A290–A290

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W et al (2019) Physico-chemical processes. Water Environ Res 91(10):1350–1377

    Article  CAS  PubMed  Google Scholar 

  • Palit S (2017) Nanomaterials for industrial wastewater treatment and water purification. In: Handbook of ecomaterials, pp 1–41

    Google Scholar 

  • Pandhi T, Chandnani A, Subbaraman H, Estrada D (2020) A review of inkjet printed graphene and carbon nanotubes based gas sensors. Sensors 20(19):5642

    Article  CAS  PubMed Central  Google Scholar 

  • Patel HK, Kalaria RK, Khimani MR (2020) Nanotechnology: a promising tool for bioremediation. In: Removal of toxic pollutants through microbiological and tertiary treatment, pp 515–547

    Google Scholar 

  • Pathak A, Panda AB, Tarafdar A, Pramanik P (2003) Synthesis of nano-sized metal oxide powders and their application in separation technology. J Ind Chem Soc 80:289–296

    CAS  Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Heal C 27(1):1–35

    Article  CAS  Google Scholar 

  • Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40:127–148

    Article  CAS  Google Scholar 

  • Sakr TM, Korany M, Katti KV (2018) Selenium nanomaterials in biomedicine—an overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol 46:223–233

    Article  CAS  Google Scholar 

  • Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternate. Bioprocess Biosyst Eng 35:637–643

    Article  CAS  PubMed  Google Scholar 

  • Scalese S, Nicotera I, D'Angelo D, Filice S, Libertino S, Simari C et al (2016) Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion membranes. New J Chem 40(4):3654–3663

    Article  CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46:1800–1807

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):84

    Article  CAS  Google Scholar 

  • Sinha AK, Suzuki K (2007) Novel mesoporous chromium oxide for VOCs elimination. Appl Catal B: Environ 70(1–4):417–422

    Article  CAS  Google Scholar 

  • Suman, Kardam A, Gera M, Jain VK (2015) A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ Technol 36(6):706–714

    Article  CAS  PubMed  Google Scholar 

  • Tetteh EK, Rathilal S (2020) Evaluation of different polymeric coagulants for the treatment of oil refinery wastewater. Cogent Eng 7(1):1785756

    Article  Google Scholar 

  • Thines KR, Abdullah EC, Mubarak NM (2017) Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass. Micropor Mesopor Mater 253:29–39

    Article  CAS  Google Scholar 

  • Uchida T, Ohashi O, Kawamoto H, Yoshimura H, Kobayashi KI, Tanimura M et al (2006) Synthesis of single-wall carbon nanotubes from diesel soot. Jpn J Appl Phys 45(10R):8027

    Article  CAS  Google Scholar 

  • Uddin AJ, Araki J, Fujie M, Sembo S, Gotoh Y (2012) Interfacial interaction and mechanical properties of chitin whisker-poly(vinyl alcohol) gel-spun nanocomposite fibers. Polym Int 61:1010–1015

    Article  CAS  Google Scholar 

  • Uddin MT, Hoque ME, Bhoumick MC (2020) Facile one-pot synthesis of heterostructure SnO 2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv 10(40):23554–23565

    Article  CAS  Google Scholar 

  • Uma Suganya KS, Govindaraju K, Ganesh Kumar V et al (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356

    Article  CAS  Google Scholar 

  • Veisi H, Azizi S, Mohammadi P (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Clean Prod 170:1536–1543

    Article  CAS  Google Scholar 

  • Wang X, Liu B, Lu Q, Qu Q (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15

    Article  CAS  PubMed  Google Scholar 

  • Willner MR, Vikesland PJ (2018) Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnol 16(1):1–16

    Article  Google Scholar 

  • Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X et al (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem 3(29):14929–14941

    Article  CAS  Google Scholar 

  • Yang J, Hou B, Wang J, Tian B, Bi J, Wang N et al (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials (Basel) 9(3):424

    Article  CAS  Google Scholar 

  • Yi W, Li Z, Dong C, Li HW, Li J (2019) Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem J 148:774–783

    Article  CAS  Google Scholar 

  • Zhang X, Liu Y (2020) Nanomaterials for radioactive wastewater decontamination. Environ Sci Nano 7(4):1008–1040

    Article  CAS  Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iswar Baitharu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, S., Ekka, N.J., Nayak, B., Baitharu, I. (2022). Bioactive Nanoparticles: A Next Generation Smart Nanomaterials for Pollution Abatement and Ecological Sustainability. In: Arakha, M., Pradhan, A.K., Jha, S. (eds) Bio-Nano Interface. Springer, Singapore. https://doi.org/10.1007/978-981-16-2516-9_15

Download citation

Publish with us

Policies and ethics