Skip to main content

Performance Enhancement of Surface Plasmon Resonance (SPR) Structure Using a Sinusoidal Diffraction Grating

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 771))

  • 1018 Accesses

Abstract

In this paper, a sinusoidal diffraction grating is being used for designing a Surface Plasmon Resonance (SPR) structure. The operation of the structure has been examined by using the wavelength-interrogation technique. We have considered the reflected amplitude and absorption dip of the SPR response curve as design parameters for designing this structure. On the performance comparison of gold (Au)-based over silver (Ag)-based SPR structure, although the Ag-based SPR structure gives better results. Due to the poor chemical stability of silver, a thin film of gold is used over it which enhances the performance of the proposed bimetallic SPR structure. This can be used in bioscience for observing the variation of refractive index in an analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jamil NA, Menon PS, Said FA, Tarumaraja KA, Mei GS, Majlis BY (2017) Proc IEEE Reg Symp Micro Nanoelectron RSM 2017:112–115

    Google Scholar 

  2. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond Edinb Dublin Philos Mag J Sci 4:396–402

    Google Scholar 

  3. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216:398–410

    Article  Google Scholar 

  4. Kretschmann E (1996) Determination of optical constants of metals by excitation of surface plasmon sensing. Sens Actuators B Chem 35:212

    Article  Google Scholar 

  5. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304

    Article  Google Scholar 

  6. Homola J, Yee SS, Gauglitz G (1994) surface plasmon resonance sensors: review. Sens Actuators B 54:3–15

    Article  Google Scholar 

  7. Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot JP, Boukherroub R, Szunerits S (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15:208–224

    Article  Google Scholar 

  8. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  Google Scholar 

  9. Tong L, Wei H, Zhang S, Xu H (2014) Recent advances in plasmonic sensors. Sensors 14:7959–7973

    Article  Google Scholar 

  10. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch 23A:2135–2136

    Article  Google Scholar 

  11. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A Hadron Nuclei 216:398–410

    Article  Google Scholar 

  12. Cullen DC, Brown RG, Lowe CR (1987) Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors 3:211–225

    Article  Google Scholar 

  13. Jory MJ, Vukusic PS, Sambles JR Development of a prototype gas sensor using surface plasmon resonance on gratings. Sens. Actuators B Chem

    Google Scholar 

  14. Bhatia P, Gupta BD (2011) Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement. Appl Opt 50:2032–2036

    Article  Google Scholar 

  15. Bhatia P, Gupta BD (2013) Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: effect of doping. Opt Commun 286:171–175

    Article  Google Scholar 

  16. Singh S, Mishra SK, Gupta BD (2013) Sensitivity enhancement of a surface plasmon resonance-based fiber optic refractive index sensor utilizing an additional layer of oxides. Sens Actuators A Phys 193:136–140

    Article  Google Scholar 

  17. Tabassum R, Gupta BD (2015) Performance analysis of bimetallic layer with zinc oxide for SPR-based fiber optic sensor. J Lightw Technol 33:4565–4571

    Article  Google Scholar 

  18. Tabassum R, Gupta BD (2017) Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J Sel Top Quantum Electron 23:81–88

    Article  Google Scholar 

  19. Usha SP, Gupta BD (2017) Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin-film/nanostructure. Appl Opt 56:5716–5725

    Article  Google Scholar 

  20. Homola J, M Piliarik (2006) Surface plasmon resonance (SPR) sensors. Ser Chem Sens Biosens 4:45–67

    Google Scholar 

  21. Reports on progress in physics. IOPscience 75:036501 (2012)

    Google Scholar 

  22. Liedberg B, Lundstrom I, Stenberg E (1993) Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens Actuators B Chem 11(1–3):63–72

    Article  Google Scholar 

  23. Homola J (2003) Anal Bioanal Chem 377:528

    Google Scholar 

  24. Schasfoort RB (2017) Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge, UK

    Book  Google Scholar 

  25. Homola J, Koudela I et al (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B 54:16–24

    Article  Google Scholar 

  26. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens Actuators B Chem 41:207–211

    Article  Google Scholar 

  27. Byun KM, Kim SJ et al (2007) Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings. Appl Opt 46:5703–5708

    Article  Google Scholar 

  28. Ung B, Sheng Y (2007) Interference of surface waves in a metallic nanoslit. Opt Expr 15:1182–1190

    Article  Google Scholar 

  29. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Google Scholar 

  30. Ung B, Sheng Y (2007) Interference of surface waves in a metallic nanoslit. Opt Express 15:1182–1190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Jangid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jangid, M., Saharia, A., Nitesh Mudgal, Singh, S.V., Singh, G. (2022). Performance Enhancement of Surface Plasmon Resonance (SPR) Structure Using a Sinusoidal Diffraction Grating. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2818-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2817-7

  • Online ISBN: 978-981-16-2818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics