Skip to main content

TiO2-Based Composites for Water Decolorization

  • Chapter
  • First Online:
Novel Materials for Dye-containing Wastewater Treatment

Abstract

Photocatalysis, being a sustainable and environmentally friendly technology with potential for low-cost applications, is one of the most researched methods for dye decolourization. Among the various photocatalysts available, TiO2 is a highly efficient and stable photocatalyst. Even though reports of scientific studies on the use of TiO2 dates to 1930s, wider attention and numerous studies on its application as a photocatalyst for environmental remediation started after the study by Fujishima and Honda in 1972. The use of pure TiO2 as photocatalyst is limited due to its high band gap energy and recombination rate. Also, the photo excitation of TiO2 is in the ultraviolet (UV) range and consequently, only 5% of the total solar energy could be utilized for photocatalysis with pure TiO2. Another limiting factor affecting the efficiency of degradation is mass transport limitation and agglomeration of the photocatalyst. This chapter reviews composites with metals, non-metals, semiconductors, carbon derivatives and other support structure, which are developed to tackle the limitations of photocatalysis with pure TiO2. Metal-doped photocatalysts aid in reduced recombination and visible light photocatalysis. Non-metal doping leads to band gap modification and redshift. Heterojunctions with semiconductors as photosensitizer or electron sinks are possible. Carbon derivative-based composites and support structure-based composites also are studied extensively. Of late, co-modified composites are gaining importance. Overall, this book chapter intends to take the readers through the journey of development and application of TiO2-based photocatalysts for dye degradation with emphasis on composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adly MS, El-Dafrawy SM, El-Hakam SA (2019) Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of rhodamine B and acid green 25 dyes. J Mater Res Technol 8:5610–5622. https://doi.org/10.1016/j.jmrt.2019.09.029

    Article  CAS  Google Scholar 

  2. Ahmad S, Saeed A (2019) Synthesis of metal/silica/titania composites for the photocatalytic removal of methylene blue dye. J Chem 2019:1–6. https://doi.org/10.1155/2019/9010289

    Article  CAS  Google Scholar 

  3. Alamelu K, Raja V, Shiamala L, Jaffar Ali BM (2018) Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl Surf Sci 430:145–154. https://doi.org/10.1016/j.apsusc.2017.05.054

    Article  CAS  Google Scholar 

  4. Ali I, Kim J-O (2018) Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation. Chemosphere 207:285–292. https://doi.org/10.1016/j.chemosphere.2018.05.075

    Article  CAS  Google Scholar 

  5. Ambrus Z, Balázs N, Alapi T et al (2008) Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Appl Catal B Environ 81:27–37. https://doi.org/10.1016/j.apcatb.2007.11.041

    Article  CAS  Google Scholar 

  6. Andriantsiferana C, Mohamed EF, Delmas H (2014) Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material. Environ Technol 35:355–363. https://doi.org/10.1080/09593330.2013.828094

    Article  CAS  Google Scholar 

  7. Asiltürk M, Sayılkan F, Arpaç E (2009) Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. J Photochem Photobiol A Chem 203:64–71. https://doi.org/10.1016/j.jphotochem.2008.12.021

    Article  CAS  Google Scholar 

  8. Atchudan R, Jebakumar Immanuel Edison TN, Perumal S et al (2017) Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation. J Photochem Photobiol A Chem 333:92–104. https://doi.org/10.1016/j.jphotochem.2016.10.021

    Article  CAS  Google Scholar 

  9. Azami MS, Ismail K, Ishak MAM et al (2020) Formation of an amorphous carbon nitride/titania composite for photocatalytic degradation of RR4 dye. J Water Process Eng 35: https://doi.org/10.1016/j.jwpe.2020.101209

    Article  Google Scholar 

  10. Badawy MI, Ali MEM, Ghaly MY, El-Missiry MA (2015) Mesoporous simonkolleite–TiO2 nanostructured composite for simultaneous photocatalytic hydrogen production and dye decontamination. Process Saf Environ Prot 94:11–17. https://doi.org/10.1016/j.psep.2014.12.001

    Article  CAS  Google Scholar 

  11. Bai S, Li H, Guan Y, Jiang S (2011) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257:6406–6409. https://doi.org/10.1016/j.apsusc.2011.02.007

    Article  CAS  Google Scholar 

  12. Bai S, Liu H, Sun J et al (2015) Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Appl Surf Sci 338:61–68. https://doi.org/10.1016/j.apsusc.2015.02.103

    Article  CAS  Google Scholar 

  13. Bailón-García E, Elmouwahidi A, Álvarez MA et al (2017) New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl Catal B Environ 201:29–40. https://doi.org/10.1016/j.apcatb.2016.08.015

    Article  CAS  Google Scholar 

  14. Bento RT, Correa OV, Pillis MF (2019) Photocatalytic activity of undoped and sulfur-doped TiO2 films grown by MOCVD for water treatment under visible light. J Eur Ceram Soc 39:3498–3504. https://doi.org/10.1016/j.jeurceramsoc.2019.02.046

    Article  CAS  Google Scholar 

  15. Bessekhouad Y, Robert D, Weber J-V, Chaoui N (2004) Effect of alkaline-doped TiO2 on photocatalytic efficiency. J Photochem Photobiol A Chem 167:49–57. https://doi.org/10.1016/j.jphotochem.2003.12.001

    Article  CAS  Google Scholar 

  16. Boikanyo D, Mishra SB, Nxumalo EN et al (2019) Erbium and MWCNT-modified titanium dioxide nanocomposites for the photocatalytic degradation of Azo dyes

    Google Scholar 

  17. Brindha A, Sivakumar T (2017) Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J Photochem Photobiol A Chem 340:146–156. https://doi.org/10.1016/j.jphotochem.2017.03.010

    Article  CAS  Google Scholar 

  18. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555. https://doi.org/10.1016/j.jece.2017.07.080

    Article  CAS  Google Scholar 

  19. Cantarella M, Sanz R, Buccheri MA et al (2016) Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J Photochem Photobiol A Chem 321:1–11. https://doi.org/10.1016/j.jphotochem.2016.01.020

    Article  CAS  Google Scholar 

  20. Chan SHS, Yeong WuT, Juan JC, Teh CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86:1130–1158. https://doi.org/10.1002/jctb.2636

    Article  CAS  Google Scholar 

  21. Chen D, Jiang Z, Geng J et al (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746. https://doi.org/10.1021/ie061491k

    Article  CAS  Google Scholar 

  22. Chen L-C, Huang C-M, Tsai F-R (2007) Characterization and photocatalytic activity of K+-doped TiO2 photocatalysts. J Mol Catal A: Chem 265:133–140. https://doi.org/10.1016/j.molcata.2006.10.011

    Article  CAS  Google Scholar 

  23. Chen Q, Jiang D, Shi W et al (2009) Visible-light-activated Ce–Si co-doped TiO2 photocatalyst. Appl Surf Sci 255:7918–7924. https://doi.org/10.1016/j.apsusc.2009.04.167

    Article  CAS  Google Scholar 

  24. Chen J, Qian Y, Wei X (2010) Comparison of magnetic-nanometer titanium dioxide/ferriferous oxide (TiO2/Fe3O4) composite photocatalyst prepared by acid–sol and homogeneous precipitation methods. J Mater Sci 45:6018–6024. https://doi.org/10.1007/s10853-010-4685-z

    Article  CAS  Google Scholar 

  25. Cheng X, Yu X, Xing Z, Wan J (2012) Enhanced photocatalytic activity of nitrogen doped TiO2 anatase nano-particle under simulated sunlight irradiation. Energy Procedia 16:598–605. https://doi.org/10.1016/j.egypro.2012.01.096

    Article  CAS  Google Scholar 

  26. Couselo N, García Einschlag FS, Candal RJ, Jobbágy M (2008) Tungsten-doped TiO2 vs. pure TiO2 photocatalysts: effects on photobleaching kinetics and mechanism. J Phys Chem C 112:1094–1100. https://doi.org/10.1021/jp0769781

    Article  CAS  Google Scholar 

  27. Da Dalt S, Alves AK, Bergmann CP (2013) Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater Res Bull 48:1845–1850. https://doi.org/10.1016/j.materresbull.2013.01.022

    Article  CAS  Google Scholar 

  28. Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889. https://doi.org/10.1021/cr400634p

    Article  CAS  Google Scholar 

  29. Debnath S, Ballav N, Nyoni H et al (2015) Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl Catal B Environ 163:330–342. https://doi.org/10.1016/j.apcatb.2014.08.011

    Article  CAS  Google Scholar 

  30. Demirci S, Dikici T, Yurddaskal M et al (2016) Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl Surf Sci 390:591–601. https://doi.org/10.1016/j.apsusc.2016.08.145

    Article  CAS  Google Scholar 

  31. Duta A, Visa M (2015) Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J Photochem Photobiol A Chem 306:21–30. https://doi.org/10.1016/j.jphotochem.2015.03.007

    Article  CAS  Google Scholar 

  32. Elghniji K, Atyaoui A, Livraghi S et al (2012) Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination. J Alloys Compd 541:421–427. https://doi.org/10.1016/j.jallcom.2012.07.010

    Article  CAS  Google Scholar 

  33. Falah M, MacKenzie KJD (2015) Synthesis and properties of novel photoactive composites of P25 titanium dioxide and copper (I) oxide with inorganic polymers. Ceram Int 41:13702–13708. https://doi.org/10.1016/j.ceramint.2015.07.198

    Article  CAS  Google Scholar 

  34. Fang W, Xing M, Zhang J (2017) Modifications on reduced titanium dioxide photocatalysts: a review. J Photochem Photobiol C Photochem Rev 32:21–39. https://doi.org/10.1016/j.jphotochemrev.2017.05.003

    Article  CAS  Google Scholar 

  35. Fang T, Chen X, Wang M et al (2020) Cuprous oxide/titanium dioxide composite photocatalytic decolorization of reactive brilliant red X-3B dyes wastewater under visible light. Res Chem Intermed 46:5459–5477. https://doi.org/10.1007/s11164-020-04272-y

    Article  CAS  Google Scholar 

  36. Farzana MH, Meenakshi S (2014) Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind Eng Chem Res 53:55–63. https://doi.org/10.1021/ie402347g

    Article  CAS  Google Scholar 

  37. Feng L, van Hullebusch ED, Rodrigo MA et al (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964. https://doi.org/10.1016/j.cej.2013.05.061

    Article  CAS  Google Scholar 

  38. Garusinghe UM, Raghuwanshi VS, Batchelor W, Garnier G (2018) Water resistant cellulose—titanium dioxide composites for photocatalysis. Sci Rep 8:2306. https://doi.org/10.1038/s41598-018-20569-w

    Article  CAS  Google Scholar 

  39. Gayathri S, Kottaisamy M, Ramakrishnan V (2015) Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Adv 5: https://doi.org/10.1063/1.4938544

    Article  CAS  Google Scholar 

  40. Gomathi Thanga Keerthana B, Murugakoothan P (2019) Synthesis and characterization of CdS/TiO2 nanocomposite: methylene blue adsorption and enhanced photocatalytic activities. Vacuum 159:476–481. https://doi.org/10.1016/j.vacuum.2018.10.082

    Article  CAS  Google Scholar 

  41. Gopalakrishnan K, Joshi HM, Kumar P et al (2011) Selectivity in the photocatalytic properties of the composites of TiO2 nanoparticles with B- and N-doped graphenes. Chem Phys Lett 511:304–308. https://doi.org/10.1016/j.cplett.2011.06.033

    Article  CAS  Google Scholar 

  42. Habiba U, Islam MS, Siddique TA et al (2016) Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na–Titanate/TiO2 composites synthesized by solution casting method. Carbohydr Polym 149:317–331. https://doi.org/10.1016/j.carbpol.2016.04.127

    Article  CAS  Google Scholar 

  43. Habibi MH, Esfahani MN, Egerton TA (2007) Photochemical characterization and photocatalytic properties of a nanostructure composite TiO2 film. Int J Photoenergy 2007:1–8. https://doi.org/10.1155/2007/13653

    Article  CAS  Google Scholar 

  44. Han F, Kambala VSR, Srinivasan M et al (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40. https://doi.org/10.1016/j.apcata.2009.02.043

    Article  CAS  Google Scholar 

  45. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285. https://doi.org/10.1143/JJAP.44.8269

    Article  CAS  Google Scholar 

  46. Hickman R, Walker E, Chowdhury S (2018) TiO2-PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. J Water Process Eng 24:74–82. https://doi.org/10.1016/j.jwpe.2018.05.015

    Article  Google Scholar 

  47. Higashimoto S (2019) Titanium-dioxide-based visible-light-sensitive photocatalysis: mechanistic insight and applications. Catalysts 9:201. https://doi.org/10.3390/catal9020201

    Article  CAS  Google Scholar 

  48. Hurum DC, Agrios AG, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. https://doi.org/10.1021/jp0273934

    Article  CAS  Google Scholar 

  49. Ibukun O, Evans PE, Dowben PA, Kyung Jeong H (2019) Titanium dioxide-molybdenum disulfide for photocatalytic degradation of methylene blue. Chem Phys 525: https://doi.org/10.1016/j.chemphys.2019.110419

    Article  CAS  Google Scholar 

  50. Jiang T, Zhang L, Ji M et al (2013) Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11:737–742. https://doi.org/10.1016/j.partic.2012.07.008

    Article  CAS  Google Scholar 

  51. Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S (2010) Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym Degrad Stab 95:1894–1902. https://doi.org/10.1016/j.polymdegradstab.2010.04.019

    Article  CAS  Google Scholar 

  52. Kanjwal MA, Lo KKS, Leung WW-F (2019) Graphene composite nanofibers as a high-performance photocatalyst for environmental remediation. Sep Purif Technol 215:602–611. https://doi.org/10.1016/j.seppur.2019.01.044

    Article  CAS  Google Scholar 

  53. Karimi L (2017) Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity. Polish J Chem Technol 19:56–60. https://doi.org/10.1515/pjct-2017-0028

    Article  CAS  Google Scholar 

  54. Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir 21:5600–5604. https://doi.org/10.1021/la0502443

    Article  CAS  Google Scholar 

  55. Kianfar AH, Dehghani P, Momeni MM (2016) Photo-catalytic degradation of methylene blue over nano titanium/nickel oxide prepared from supported Schiff base complex on titanium dioxide. J Mater Sci: Mater Electron 27:3368–3375. https://doi.org/10.1007/s10854-015-4167-9

    Article  CAS  Google Scholar 

  56. Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267. https://doi.org/10.1021/jp055278y

    Article  CAS  Google Scholar 

  57. Koohestani H, Sadrnezhaad SK (2016) Photocatalytic degradation of methyl orange and cyanide by using TiO2/CuO composite. Desalin Water Treat 57:22029–22038. https://doi.org/10.1080/19443994.2015.1132395

    Article  CAS  Google Scholar 

  58. Kratofil Krehula L, Stjepanović J, Perlog M et al (2019) Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light. Polym Bull 76:1697–1715. https://doi.org/10.1007/s00289-018-2463-2

    Article  CAS  Google Scholar 

  59. Kutuzova AS, Dontsova TA (2019) Characterization and properties of TiO2–SnO2 nanocomposites, obtained by hydrolysis method. Appl Nanosci 9:873–880. https://doi.org/10.1007/s13204-018-0754-4

    Article  CAS  Google Scholar 

  60. Kuvarega AT, Khumalo N, Dlamini D, Mamba BB (2018) Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep Purif Technol 191:122–133. https://doi.org/10.1016/j.seppur.2017.07.064

    Article  CAS  Google Scholar 

  61. Lai YK, Huang JY, Zhang HF et al (2010) Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J Hazard Mater 184:855–863. https://doi.org/10.1016/j.jhazmat.2010.08.121

    Article  CAS  Google Scholar 

  62. Laysandra L, Sari MWMK, Soetaredjo FE et al (2017) Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon 3: https://doi.org/10.1016/j.heliyon.2017.e00488

    Article  Google Scholar 

  63. Lazar M, Varghese S, Nair S (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601. https://doi.org/10.3390/catal2040572

    Article  CAS  Google Scholar 

  64. Le P, Hieu L, Lam T-N et al (2018) Enhanced photocatalytic performance of nitrogen-doped TiO2 nanotube arrays using a simple annealing process. Micromachines 9:618. https://doi.org/10.3390/mi9120618

    Article  Google Scholar 

  65. Lee YC, Hong YP, Lee HY et al (2003) Photocatalysis and hydrophilicity of doped TiO2 thin films. J Colloid Interface Sci 267:127–131. https://doi.org/10.1016/S0021-9797(03)00603-9

    Article  CAS  Google Scholar 

  66. Li W, Cui X, Wang P et al (2013) Enhanced photosensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation. Mater Res Bull 48:3025–3031. https://doi.org/10.1016/j.materresbull.2013.04.057

    Article  CAS  Google Scholar 

  67. Li H, Xing J, Xia Z, Chen J (2014) Preparation of extremely smooth and boron-fluorine co-doped TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance. Electrochim Acta 139:331–336. https://doi.org/10.1016/j.electacta.2014.06.172

    Article  CAS  Google Scholar 

  68. Li Y, Zhou J, Fan Y et al (2017) Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes. Chem Phys Lett 689:142–147. https://doi.org/10.1016/j.cplett.2017.10.019

    Article  CAS  Google Scholar 

  69. Liqiang J, Xiaojun S, Baifu X et al (2004) The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J Solid State Chem 177:3375–3382. https://doi.org/10.1016/j.jssc.2004.05.064

    Article  CAS  Google Scholar 

  70. Liu Y, Chen X, Li J, Burda C (2005) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18. https://doi.org/10.1016/j.chemosphere.2005.03.069

    Article  CAS  Google Scholar 

  71. Liu S, Sun H, Liu S, Wang S (2013) Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem Eng J 214:298–303. https://doi.org/10.1016/j.cej.2012.10.058

    Article  CAS  Google Scholar 

  72. Liu H, Guo W, Li Y et al (2018) Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light. J Environ Chem Eng 6:59–67. https://doi.org/10.1016/j.jece.2017.11.063

    Article  CAS  Google Scholar 

  73. Liu Z, Liu R, Yi Y et al (2019) Photocatalytic degradation of dyes over a xylan/PVA/TiO2 composite under visible light irradiation. Carbohydr Polym 223: https://doi.org/10.1016/j.carbpol.2019.115081

    Article  CAS  Google Scholar 

  74. Magalhães F, Moura FCC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276:266–271. https://doi.org/10.1016/j.desal.2011.03.061

    Article  CAS  Google Scholar 

  75. Mahadik MA, An GW, David S et al (2017) Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl Surf Sci 426:833–843. https://doi.org/10.1016/j.apsusc.2017.07.179

    Article  CAS  Google Scholar 

  76. Makal P, Das D (2019) Superior photocatalytic dye degradation under visible light by reduced graphene oxide laminated TiO2-B nanowire composite. J Environ Chem Eng 7: https://doi.org/10.1016/j.jece.2019.103358

    Article  CAS  Google Scholar 

  77. Matos J, García A, Zhao L, Titirici MM (2010) Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl Catal A Gen 390:175–182. https://doi.org/10.1016/j.apcata.2010.10.009

    Article  CAS  Google Scholar 

  78. Mohamed A, El-Sayed R, Osman TA et al (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ Res 145:18–25. https://doi.org/10.1016/j.envres.2015.09.024

    Article  CAS  Google Scholar 

  79. Momeni MM, Ghayeb Y (2016) Preparation of cobalt coated TiO2 and WO3–TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination. Ceram Int 42:7014–7022. https://doi.org/10.1016/j.ceramint.2016.01.089

    Article  CAS  Google Scholar 

  80. Mukthar Ali M, Sandhya KY (2016) Selective photodegradation and enhanced photo electrochemical properties of titanium dioxide–graphene composite with exposed (001) facets made by photochemical method. Sol Energy Mater Sol Cells 144:748–757. https://doi.org/10.1016/j.solmat.2015.10.025

    Article  CAS  Google Scholar 

  81. Muthirulan P, Devi CN, Sundaram MM (2014) TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations. Ceram Int 40:5945–5957. https://doi.org/10.1016/j.ceramint.2013.11.042

    Article  CAS  Google Scholar 

  82. Muthirulan P, Nirmala Devi C, Meenakshi Sundaram M (2017) Synchronous role of coupled adsorption and photocatalytic degradation on CAC–TiO2 composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution. Arab J Chem 10:S1477–S1483. https://doi.org/10.1016/j.arabjc.2013.04.028

    Article  CAS  Google Scholar 

  83. Nam S-H, Kim TK, Boo J-H (2012) Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catal Today 185:259–262. https://doi.org/10.1016/j.cattod.2011.07.033

    Article  CAS  Google Scholar 

  84. Nasr M, Eid C, Habchi R et al (2018) Recent progress on titanium dioxide nanomaterials for photocatalytic applications. Chemsuschem 11:3023–3047. https://doi.org/10.1002/cssc.201800874

    Article  CAS  Google Scholar 

  85. Nguyen-Phan T-D, Pham VH, Shin EW et al (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232. https://doi.org/10.1016/j.cej.2011.03.060

    Article  CAS  Google Scholar 

  86. Nguyen CH, Juang R-S (2019) Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. J Ind Eng Chem 76:296–309. https://doi.org/10.1016/j.jiec.2019.03.054

    Article  CAS  Google Scholar 

  87. Nguyen CH, Fu C-C, Juang R-S (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod 202:413–427. https://doi.org/10.1016/j.jclepro.2018.08.110

    Article  CAS  Google Scholar 

  88. Nuengmatcha P, Chanthai S, Mahachai R, Oh W-C (2016) Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. J Environ Chem Eng 4:2170–2177. https://doi.org/10.1016/j.jece.2016.03.045

    Article  CAS  Google Scholar 

  89. Oh WC, Jung AR, Ko WB (2009) Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity. Mater Sci Eng C 29:1338–1347. https://doi.org/10.1016/j.msec.2008.10.034

    Article  CAS  Google Scholar 

  90. Ohno T, Akiyoshi M, Umebayashi T et al (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121. https://doi.org/10.1016/j.apcata.2004.01.007

    Article  CAS  Google Scholar 

  91. Pal M, Bera S, Jana S (2015) Sol-gel based simonkolleite nanopetals with SnO2 nanoparticles in graphite-like amorphous carbon as an efficient and reusable photocatalyst. RSC Adv 5:75062–75074. https://doi.org/10.1039/c5ra12322d

    Article  CAS  Google Scholar 

  92. Park CY, Kefayat U, Vikram N et al (2013) Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light. Bull Mater Sci 36:869–876. https://doi.org/10.1007/s12034-013-0533-5

    Article  CAS  Google Scholar 

  93. Pastrana-Martínez LM, Morales-Torres S, Likodimos V et al (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ 123–124:241–256. https://doi.org/10.1016/j.apcatb.2012.04.045

    Article  CAS  Google Scholar 

  94. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  95. Pham T-T, Nguyen-Huy C, Shin EW (2016) Facile one-pot synthesis of nickel-incorporated titanium dioxide/graphene oxide composites: enhancement of photodegradation under visible-irradiation. Appl Surf Sci 377:301–310. https://doi.org/10.1016/j.apsusc.2016.03.144

    Article  CAS  Google Scholar 

  96. Pillai IMS, Gupta AK (2016) Electrochemical degradation of malachite green: Multiparameter optimization, pathway identification and toxicity analysis. J Environ Sci Heal Part A Environ Sci Eng Toxicol 51:1091–1099

    Google Scholar 

  97. Pillai IMS, Gupta AK, Tiwari MK (2015) Multivariate optimization for electrochemical oxidation of methyl orange: pathway identification and toxicity analysis. J Environ Sci Health A Tox Hazard Subst Environ Eng 50:301–310. https://doi.org/10.1080/10934529.2015.981119

    Article  CAS  Google Scholar 

  98. Raghuwanshi VS, Garusinghe UM, Batchelor W, Garnier G (2020) Polyamide-amine-epichlorohydrin (PAE) induced TiO2 nanoparticles assembly in cellulose network. J Colloid Interface Sci 575:317–325. https://doi.org/10.1016/j.jcis.2020.04.121

    Article  CAS  Google Scholar 

  99. Rajamanickam D, Shanthi M (2014) Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts. Spectrochim Acta Part A Mol Biomol Spectrosc 128:100–108. https://doi.org/10.1016/j.saa.2014.02.126

    Article  CAS  Google Scholar 

  100. Rajamanickam D, Dhatshanamurthi P, Shanthi M (2015) Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination. Spectrochim Acta Part A Mol Biomol Spectrosc 138:489–498. https://doi.org/10.1016/j.saa.2014.11.070

    Article  CAS  Google Scholar 

  101. Rajkumar K, Vairaselvi P, Saravanan P et al (2015) Visible-light-driven SnO2/TiO2 nanotube nanocomposite for textile effluent degradation. RSC Adv 5:20424–20431. https://doi.org/10.1039/c4ra13434f

    Article  CAS  Google Scholar 

  102. Reddy KR, Nakata K, Ochiai T et al (2011) Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11:3692–3695. https://doi.org/10.1166/jnn.2011.3805

    Article  CAS  Google Scholar 

  103. Reddy KR, Karthik KV, Prasad SBB et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. https://doi.org/10.1016/j.poly.2016.08.029

    Article  CAS  Google Scholar 

  104. Ren W, Ai Z, Jia F et al (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144. https://doi.org/10.1016/j.apcatb.2006.06.015

    Article  CAS  Google Scholar 

  105. Sahoo C, Gupta AK (2012) Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J Hazard Mater 215–216:302–310. https://doi.org/10.1016/j.jhazmat.2012.02.072

    Article  CAS  Google Scholar 

  106. Sahoo C, Gupta AK, Pillai IMS (2012) Heterogeneous photocatalysis of real textile wastewater: evaluation of reaction kinetics and characterization. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:2109–2119. https://doi.org/10.1080/10934529.2012.695996

    Article  CAS  Google Scholar 

  107. Sahoo C, Gupta AK, Sasidharan Pillai IM (2012) Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1428–1438. https://doi.org/10.1080/10934529.2012.672387

    Article  CAS  Google Scholar 

  108. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106. https://doi.org/10.1016/j.jcis.2011.12.038

    Article  CAS  Google Scholar 

  109. Sampaio MJ, Marques RRN, Tavares PB et al (2013) Tailoring the properties of immobilized titanium dioxide/carbon nanotube composites for photocatalytic water treatment. J Environ Chem Eng 1:945–953. https://doi.org/10.1016/j.jece.2013.08.014

    Article  CAS  Google Scholar 

  110. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349–6353. https://doi.org/10.1021/cm052047v

    Article  CAS  Google Scholar 

  111. Scarisoreanu M, Fleaca C, Morjan I et al (2017) High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis. Appl Surf Sci 418:491–498. https://doi.org/10.1016/j.apsusc.2016.12.122

    Article  CAS  Google Scholar 

  112. Shao J, Sheng W, Wang M et al (2017) In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl Catal B Environ 209:311–319. https://doi.org/10.1016/j.apcatb.2017.03.008

    Article  CAS  Google Scholar 

  113. Sillanpää M, Ncibi MC, Matilainen A (2018) Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review. J Environ Manage 208:56–76. https://doi.org/10.1016/j.jenvman.2017.12.009

    Article  CAS  Google Scholar 

  114. Singh P, Vishnu MC, Sharma KK et al (2016) Photocatalytic degradation of Acid Red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration. J Water Process Eng 12:20–31. https://doi.org/10.1016/j.jwpe.2016.04.007

    Article  Google Scholar 

  115. Singh B, Kaur G, Singh P et al (2017) Nanostructured BN–TiO2 composite with ultra-high photocatalytic activity. New J Chem 41:11640–11646. https://doi.org/10.1039/C7NJ02509B

    Article  CAS  Google Scholar 

  116. Sirirerkratana K, Kemacheevakul P, Chuangchote S (2019) Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. J Clean Prod 215:123–130. https://doi.org/10.1016/j.jclepro.2019.01.037

    Article  CAS  Google Scholar 

  117. Siuzdak K, Szkoda M, Lisowska-Oleksiak A et al (2015) Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity. Appl Surf Sci 357:942–950. https://doi.org/10.1016/j.apsusc.2015.09.130

    Article  CAS  Google Scholar 

  118. Song J, Wang X, Chen O-P et al (2015) Photocatalytic degradation of reactive black-5 dye with novel graphene-titanium nanotube composite. Sep Sci Technol 50:1394–1402. https://doi.org/10.1080/01496395.2014.969377

    Article  CAS  Google Scholar 

  119. Stathatos E, Papoulis D, Aggelopoulos CA et al (2012) TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. J Hazard Mater 211–212:68–76. https://doi.org/10.1016/j.jhazmat.2011.11.055

    Article  CAS  Google Scholar 

  120. Štengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226. https://doi.org/10.1016/j.matchemphys.2008.09.025

    Article  CAS  Google Scholar 

  121. Sun J, Qiao L, Sun S, Wang G (2008) Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J Hazard Mater 155:312–319. https://doi.org/10.1016/j.jhazmat.2007.11.062

    Article  CAS  Google Scholar 

  122. Suwarnkar MB, Dhabbe RS, Kadam AN, Garadkar KM (2014) Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram Int 40:5489–5496. https://doi.org/10.1016/j.ceramint.2013.10.137

    Article  CAS  Google Scholar 

  123. Tahiri Alaoui O, Nguyen QT, Mbareck C, Rhlalou T (2009) Elaboration and study of poly(vinylidene fluoride)–anatase TiO2 composite membranes in photocatalytic degradation of dyes. Appl Catal A Gen 358:13–20. https://doi.org/10.1016/j.apcata.2009.01.032

    Article  CAS  Google Scholar 

  124. Tristão JC, Magalhães F, Corio P, Sansiviero MTC (2006) Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J Photochem Photobiol A Chem 181:152–157. https://doi.org/10.1016/j.jphotochem.2005.11.018

    Article  CAS  Google Scholar 

  125. Umebayashi T, Yamaki T, Tanaka S, Asai K (2003) Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett 32:330–331. https://doi.org/10.1246/cl.2003.330

    Article  CAS  Google Scholar 

  126. UNESCO WWAP (2020) World water development report 2020—water and climate change

    Google Scholar 

  127. Upadhyay GK, Rajput JK, Pathak TK et al (2019) Synthesis of ZnO:TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 160:154–163. https://doi.org/10.1016/j.vacuum.2018.11.026

    Article  CAS  Google Scholar 

  128. Varnagiris S, Medvids A, Lelis M et al (2019) Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis. J Photochem Photobiol A Chem 382: https://doi.org/10.1016/j.jphotochem.2019.111941

    Article  CAS  Google Scholar 

  129. Wongso V, Chen CJ, Razzaq A et al (2019) Hybrid kaolin/TiO2 composite: effect of urea addition towards an efficient photocatalyst for dye abatement under visible light irradiation. Appl Clay Sci 180: https://doi.org/10.1016/j.clay.2019.105158

    Article  CAS  Google Scholar 

  130. Xiao Q, Zhang J, Xiao C et al (2008) Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol Energy 82:706–713. https://doi.org/10.1016/j.solener.2008.02.006

    Article  CAS  Google Scholar 

  131. Xu J, Ao Y, Fu D, Yuan C (2008) Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl Surf Sci 254:3033–3038. https://doi.org/10.1016/j.apsusc.2007.10.065

    Article  CAS  Google Scholar 

  132. Xu S, Feng D, Shangguan W (2009) Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J Phys Chem C 113:2463–2467. https://doi.org/10.1021/jp806704y

    Article  CAS  Google Scholar 

  133. Xu J, Sun P, Zhang X et al (2014) Synthesis of N-doped TiO2 with different nitrogen concentrations by mild hydrothermal method. Mater Manuf Process 29:1162–1167. https://doi.org/10.1080/10426914.2014.921697

    Article  CAS  Google Scholar 

  134. Xu Q, Feng J, Li L et al (2015) Hollow ZnFe2O4/TiO2 composites: high-performance and recyclable visible-light photocatalyst. J Alloys Compd 641:110–118. https://doi.org/10.1016/j.jallcom.2015.04.076

    Article  CAS  Google Scholar 

  135. Yan N, Zhu Z, Zhang J et al (2012) Preparation and properties of ce-doped TiO2 photocatalyst. Mater Res Bull 47:1869–1873. https://doi.org/10.1016/j.materresbull.2012.04.077

    Article  CAS  Google Scholar 

  136. Yang K, Dai Y, Huang B (2007) Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles. J Phys Chem C 111:18985–18994. https://doi.org/10.1021/jp0756350

    Article  CAS  Google Scholar 

  137. Yang G, Jiang Z, Shi H et al (2010) Study on the photocatalysis of F-S co-doped TiO2 prepared using solvothermal method. Appl Catal B Environ 96:458–465. https://doi.org/10.1016/j.apcatb.2010.03.004

    Article  CAS  Google Scholar 

  138. Yang X, Wang S, Sun H et al (2015) Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans Nonferrous Met Soc China 25:504–509. https://doi.org/10.1016/S1003-6326%5b15%5d63631-7

    Article  CAS  Google Scholar 

  139. Yew S-P, Tang H-Y, Sudesh K (2006) Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym Degrad Stab 91:1800–1807. https://doi.org/10.1016/j.polymdegradstab.2005.11.011

    Article  CAS  Google Scholar 

  140. Yu JC, Yu J, Ho W et al (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816. https://doi.org/10.1021/cm020027c

    Article  CAS  Google Scholar 

  141. Zhang H, Lv X, Li Y et al (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. https://doi.org/10.1021/nn901221k

    Article  CAS  Google Scholar 

  142. Zhang X, Chen W, Lin Z, Shen J (2011) Photocatalytic degradation of a methyl orange wastewater solution using titanium dioxide loaded on bacterial cellulose. Synth React Inorganic Met Nano-Metal Chem 41:1141–1147. https://doi.org/10.1080/15533174.2011.591359

    Article  CAS  Google Scholar 

  143. Zhou W, Liu Q, Zhu Z, Zhang J (2010) Preparation and properties of vanadium-doped TiO2 photocatalysts. J Phys D Appl Phys 43: https://doi.org/10.1088/0022-3727/43/3/035301

    Article  CAS  Google Scholar 

  144. Zhou S, Xia L, Zhang K et al (2020) Titanium dioxide decorated natural cellulosic Juncus effusus fiber for highly efficient photodegradation towards dyes. Carbohydr Polym 232: https://doi.org/10.1016/j.carbpol.2020.115830

    Article  CAS  Google Scholar 

  145. Zhu Y, Dan Y (2010) Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange. Sol Energy Mater Sol Cells 94:1658–1664. https://doi.org/10.1016/j.solmat.2010.05.025

    Article  CAS  Google Scholar 

  146. Zhu Y, Xu S, Yi D (2010) Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React Funct Polym 70:282–287. https://doi.org/10.1016/j.reactfunctpolym.2010.01.007

    Article  CAS  Google Scholar 

  147. Zhou S, Xia L, Zhang K (2020) Titanium dioxide decorated natural cellulosic Juncus effusus fiber for highly efficient photodegradation towards dyes. Carbohydr Polym 232:115830. https://doi.org/10.1016/j.carbpol.2020.115830

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu M. Sasidharan Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasidharan Pillai, I.M., Priya, K.L. (2021). TiO2-Based Composites for Water Decolorization. In: Muthu, S.S., Khadir, A. (eds) Novel Materials for Dye-containing Wastewater Treatment . Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-2892-4_5

Download citation

Publish with us

Policies and ethics