Skip to main content

Solution to OCT Diagnosis Using Simple Baseline CNN Models and Hyperparameter Tuning

  • Conference paper
  • First Online:
International Conference on Innovative Computing and Communications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1394))

Abstract

Aim: Computer-aided diagnosis of retinopathy is a research hotspot in the field of medical image classification. Optical coherence tomography (OCT) is widely applied in the diagnosis of ocular diseases. In this study, we aim to classify the images into four classes, namely CNV, DME, drusen and normal. Methodology: In this study, we present the solution to classify the OCT images using simple baseline 3, 5 and 7 layer deep convolutional neural networks (CNNs). It also explores the effect of hyperparameters such as dropout, image size, batch normalisation, epochs and their relationships with the accuracy, sensitivity and specificity of the models. Results: The novelty of this study is that it does not use any pre-trained models and yet achieves desired results just by hyperparameter tuning and some clever observations. The best results were yielded by 5 layer model having hyperparameters image size 64 × 64, 30 epochs with dropout and batch normalisation achieving an accuracy of 97.92%. The biggest risk of overfitting in deep learning where multiple layered models are trained and tested and approaches of diminishing the overfitting effect has been discussed in detail.

Kushwaha and Rastogi authors have contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.D. Schick, N.P. Toth, Making Silent Stones Speak: Human Evolution and the Dawn of Technology (Simon and Schuster, 1994)

    Google Scholar 

  2. T. Taylor, The Artificial Ape: How Technology Changed the Course of Human Evolution (St. Martin’s Press, 2010)

    Google Scholar 

  3. S.R. Palumbi, Humans as the world’s greatest evolutionary force. Science 293(5536), 1786–1790 (2001)

    Article  Google Scholar 

  4. S. Khan, T. Yairi, A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 107, 241–265 (2018)

    Article  Google Scholar 

  5. N. Bansal, A. Sharma, R.K. Singh, A review on the application of deep learning in legal domain, in IFIP International Conference on Artificial Intelligence Applications and Innovations (Springer, Cham, 2019, May), pp. 374–381

    Google Scholar 

  6. R. Singh, S. Srivastava, Stock prediction using deep learning. Multimedia Tools Appl. 76(18), 18569–18584 (2017)

    Article  Google Scholar 

  7. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Google Scholar 

  8. C.A. Puliafito, M.R. Hee, C.P. Lin, E. Reichel, J.S. Schuman, J.S. Duker, J.A. Izatt, E.A. Swanson, J.G. Fujimoto, Imaging of macular diseases with optical coherence tomography. Ophthalmology 102(2), 217–229 (1995)

    Article  Google Scholar 

  9. K. Horie-Inoue, S. Inoue, Genomic aspects of age-related macular degeneration. Biochem. Biophys. Res. Commun. 452(2), 263–275 (2014)

    Article  Google Scholar 

  10. J. Merl-Pham, F. Gruhn, S.M. Hauck, Proteomic profiling of cigarette smoke induced changes in retinal pigment epithelium cells, in Retinal Degenerative Diseases (Springer, Cham, 2016), pp. 785–791

    Google Scholar 

  11. D. Iejima, M. Nakayama, T. Iwata, HTRA1 overexpression induces the exudative form of age-related macular degeneration. J. Stem Cells 10(3), 193 (2015)

    Google Scholar 

  12. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    Article  Google Scholar 

  13. J.R. Evans, J.G. Lawrenson, Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst. Rev. 7 (2017)

    Google Scholar 

  14. G. Gregori, F. Wang, P.J. Rosenfeld, Z. Yehoshua, N.Z. Gregori, B.J. Lujan, C.A. Puliafito, W.J. Feuer, Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration. Ophthalmology 118(7), 1373–1379 (2011)

    Google Scholar 

  15. M.M. Engelgau, L.S. Geiss, J.B. Saaddine, J.P. Boyle, S.M. Benjamin, E.W. Gregg, E.F. Tierney, N. Rios-Burrows, A.H. Mokdad, E.S. Ford, G. Imperatore, The evolving diabetes burden in the United States. Ann. Intern. Med. 140(11), 945–950 (2004)

    Article  Google Scholar 

  16. R.J. Tapp, J.E. Shaw, C.A. Harper, M.P. De Courten, B. Balkau, D.J. McCarty, H.R. Taylor, T.A. Welborn, P.Z. Zimmet, The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care 26(6), 1731–1737 (2003)

    Article  Google Scholar 

  17. P.J. Kertes, T.M. Johnson (eds.), Evidence-Based Eye Care (Lippincott Williams & Wilkins, 2007)

    Google Scholar 

  18. L.V. Johnson, W.P. Leitner, M.K. Staples, D.H. Anderson, Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp. Eye Res. 73(6), 887–896 (2001)

    Article  Google Scholar 

  19. L.V. Johnson, S. Ozaki, M.K. Staples, P. Erickson, D.H. Anderson, A potential role for immune complex pathogenesis in drusen formation. Experi. Eye Res. 70(4), 441–449 (2000)

    Google Scholar 

  20. H.E. Grossniklaus, W.R. Green, Choroidal neovascularization. Am. J. Ophthalmol. 137(3), 496–503 (2004)

    Article  Google Scholar 

  21. F. Li, H. Chen, Z. Liu, X. Zhang, M. Jiang, Z. Wu, K. Zhou, Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed. Opt. Express 10, 6204–6226 (2019)

    Article  Google Scholar 

  22. W. Lu, et al., Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl. Vis. Sci. Technol. 7(6), 41 (2018). https://doi.org/10.1167/tvst.7.6.41

  23. Y. Wang, et al., machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images. Biomed. Opt. Express 7(12), 4928 (2016). https://doi.org/10.1364/boe.7.004928

  24. P.P. Srinivasan, et al., Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed. Opt. Express 5(10), 3568 (2014). https://doi.org/10.1364/boe.5.003568

  25. D. Kermany, M. Goldbaum, W. Cai, C. Valentim, H. Liang, S. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. Prasadha, J. Pei, M. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. Huu, C. Wen, E. Zhang, C. Zhang, O. Li, X. Wang, M. Singer, X. Sun, J. Xu, A. Tafreshi, M. Lewis, H. Xia, K. Zhang, Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122-1131.e9 (2018)

    Article  Google Scholar 

  26. C.S. Lee, et al., Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration (2016). https://doi.org/10.1101/094276

  27. G.C.Y. Chan, et al., Fusing results of several deep learning architectures for automatic classification of normal and diabetic macular edema in optical coherence tomography, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018. https://doi.org/10.1109/embc.2018.8512371

  28. Z. Zhang, M.W. Beck, D.A. Winkler, B. Huang, W. Sibanda, H. Goyal, Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Annal. Transl. Med. 6(11) (2018)

    Google Scholar 

  29. Y. Bengio, Deep learning of representations for unsupervised and transfer learning, in Proceedings of ICML Workshop on Unsupervised and Transfer Learning (2012, June), pp. 17–36

    Google Scholar 

  30. H.W. Ng, V.D. Nguyen, V. Vonikakis, S. Winkler, Deep learning for emotion recognition on small datasets using transfer learning, in Proceedings of the 2015 ACM on International Conference On Multimodal Interaction (2015, Nov), pp. 443–449

    Google Scholar 

  31. R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning from unlabeled data, in Proceedings of the 24th International Conference on Machine Learning (2007, June), pp. 759–766

    Google Scholar 

  32. K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, A. Agrawal, Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)

    Article  Google Scholar 

  33. S. Ruder, M.E. Peters, S. Swayamdipta, T. Wolf, Transfer learning in natural language processing, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials (2019, June), pp. 15–18

    Google Scholar 

Download references

Funding

There was no funding provided to carry out this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kushwaha, A.K., Rastogi, S. (2022). Solution to OCT Diagnosis Using Simple Baseline CNN Models and Hyperparameter Tuning. In: Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds) International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol 1394. Springer, Singapore. https://doi.org/10.1007/978-981-16-3071-2_30

Download citation

Publish with us

Policies and ethics