Skip to main content

Conductive Polymers for Cardiovascular Applications

  • Chapter
  • First Online:
Nanoscale Engineering of Biomaterials: Properties and Applications

Abstract

The prevalence of cardiovascular diseases (CVDs) has taken a sharp rise, accounting for almost 25% of the total fatalities globally. Fortunately, the advances in therapeutic and diagnostic technologies have also been keeping up to tackle this rising challenge. The technologies based on biocompatible conductive polymers, which can be processed as composite films, nanofibers, hydrogels, and composite scaffolds, are attracting increasing interest. This chapter is focused on evaluating the role of biocompatible conductive polymers in addressing CVDs from diagnostic and therapeutic perspectives. Depending on their chemical nature, polymers can exhibit both electronic (π-conjugated polymers) and ionic conductivities (ion conductive polymers). Materials, based either entirely on conductive polymers or on their combination with other nanomaterials, are being engineered for application in addressing various CVDs. These applications include cardiac tissue engineering for treating myocardial infarction, improving the human cardiac myocyte attachment, proliferation, interaction, expression of cardiac-specific proteins, and developing conductive cardiac patches. In addition, conductive polymers based technologies are being developed for microenvironment regulation to enhance the action potential in the cardiac cells and cell-to-cell communication, nerve regeneration and repair via prosthesis electrode-tissue interface, wound healing by inducing angiogenesis, sensing of biomarkers related to cardiac failure, and monitoring and augmenting heart activity by supplying electrical signals via implantable devices. Despite significant progress, there remain challenges blocking the way for the clinical translation of these conductive polymer based technologies. In this chapter, we have reviewed some state-of-the-art developments providing a structure and property relationship that makes this particular class of polymers especially suitable for addressing CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja T, Mir IA, Kumar D (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28(5):791–805

    Article  CAS  PubMed  Google Scholar 

  • Amatore C, Bahsoun AA, Jutand A, Meyer G, Ndedi Ntepe A, Ricard L (2003) Mechanism of the Stille reaction catalyzed by palladium ligated to arsine ligand: PhPdI (AsPh3)(DMF) is the species reacting with vinylstannane in DMF. J Am Chem Soc 125(14):4212–4222

    Article  CAS  PubMed  Google Scholar 

  • Amna B, Siddiqi HM, Hassan A, Ozturk T (2020) Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems. RSC Adv 10(8):4322–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbizzani C, Mastragostino M, Nevi L, Rambelli L (2007) Polypyrrole: a drug-eluting membrane for coronary stents. Electrochim Acta 52(9):3274–3279

    Article  CAS  Google Scholar 

  • Bahri-Laleh N, Poater A, Cavallo L, Mirmohammadi SA (2014) Exploring the mechanism of Grignard metathesis polymerization of 3-alkylthiophenes. Dalton Trans 43(40):15143–15150

    Article  CAS  PubMed  Google Scholar 

  • Bakirhan NK, Ozcelikay G, Ozkan SA (2018) Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 159:406–424

    Article  CAS  PubMed  Google Scholar 

  • Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353

    Article  CAS  PubMed  Google Scholar 

  • Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Ip JH (2005) Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med 352(3):225–237

    Article  CAS  PubMed  Google Scholar 

  • Binks AE, Sharples A (1968) Electrical conduction in olefin oxide polymers. J Polym Sci 6(A2):407

    Google Scholar 

  • Blumberg AA, Pollack SS, Hoeve CA (1964) A Poly (ethylene Oxide)-Mercuric Chloride Complex. J Polym Sci 2(A2):2499

    Google Scholar 

  • Bussooa A, Neale S, Mercer J (2018) Future of smart cardiovascular implants. Sensors 18(7):2008

    Article  PubMed Central  Google Scholar 

  • Cichosz S, Masek A, Zaborski M (2018) Polymer-based sensors: a review. Polym Test 67:342

    Article  CAS  Google Scholar 

  • Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14(5):443–456

    Article  CAS  PubMed  Google Scholar 

  • Dong R, Zhao X, Guo B, Ma PX (2016) Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interfaces 8(27):17138–17150

    Article  CAS  PubMed  Google Scholar 

  • Doscher TM, Myers GC, Atkins DC Jr (1951) The behavior of nonionic surface active agents in salt solutions J Colloid Sci 6:223

    Google Scholar 

  • Gajendiran M, Choi J, Kim SJ, Kim K, Shin H, Koo HJ, Kim K (2017) Conductive biomaterials for tissue engineering applications. J Ind Eng Chem 51:12–26

    Article  CAS  Google Scholar 

  • García-Melchor M, Braga AA, Lledós A, Ujaque G, Maseras F (2013) Computational perspective on Pd-catalyzed C–C cross-coupling reaction mechanisms. Acc Chem Res 46(11):2626–2634

    Article  PubMed  Google Scholar 

  • Garnier F, Deloffre F, Horowitz G, Hajlaoui R (1993) Structure effect on transport of charge carriers in conjugated oligomers. Synth Metals 57(2–3):4747–4754

    Article  CAS  Google Scholar 

  • Gelmi A, Cieslar-Pobuda A, de Muinck E, Los M, Rafat M, Jager EWH (2016) Direct mechanical stimulation of stem cells: a beating electromechanically active scaffold for cardiac tissue engineering. Adv Healthc Mater 5(12):1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Glenis S, Benz M, LeGoff E, Kanatzidis MG, DeGroot DC, Schindler JL, Kannewurf CR (1995) Electrochemical synthesis and electronic properties of poly (3, 4-dibutyl-α-terthiophene). Synth Met 75(3):213–221

    Article  CAS  Google Scholar 

  • Grossenbacher J, Gullo MR, Dalcanale F, Blugan G, Kuebler J, Lecaudé S et al (2015) Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications. J Biomed Mater Res A 103(11):3625–3632

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Ma PX (2018) Conducting polymers for tissue engineering. Biomacromolecules 19(6):1764–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Singhal M, Nataraj SK, Srivastava DN (2016) A potentiostatic approach of growing polyaniline nanofibers in fractal morphology by interfacial electropolymerization. RSC Adv 6(111):110416–110421

    Article  CAS  Google Scholar 

  • Gupta S, Sharma A, Verma RS (2020) Polymers in biosensor devices for cardiovascular applications. Curr Opin Biomed Eng 13:69–75

    Article  Google Scholar 

  • Handa NV, Serrano AV, Robb MJ, Hawker CJ (2015) Exploring the synthesis and impact of end-functional poly(3-hexylthiophene). J Polym Sci A 53(7):831–841

    Article  CAS  Google Scholar 

  • Hardy JG, Lee JY, Schmidt CE (2013) Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotechnol 24(5):847–854

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JIE (2013) The global burden of congenital heart disease : review article. Cardiovasc J Afr 24(4):141–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Horbett TA (2020) Selected aspects of the state of the art in biomaterials for cardiovascular applications. Colloids Surf B Biointerfaces 191:110986

    Article  CAS  PubMed  Google Scholar 

  • Iovu MC, Sheina EE, Gil RR, McCullough RD (2005) Experimental evidence for the quasi-“living” nature of the Grignard metathesis method for the synthesis of regioregular poly (3-alkylthiophenes). Macromolecules 38(21):8649–8656

    Article  CAS  Google Scholar 

  • Isotalo H, Ahlskog M, Stubb H, Laakso J, Kärnä T, Jussila M, Österholm JE (1993) Stability of processed poly (3-octylthiophene) and its blends. Synth Metals 57(1):3581–3586

    Article  CAS  Google Scholar 

  • Itoi H, Hayashi S, Matsufusa H, Ohzawa Y (2017) Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors. Chem Commun 53(22):3201–3204

    Article  CAS  Google Scholar 

  • Iwamoto R, Saito Y, Ishihara H, Tadokoro H (1968) Structure of poly (ethylene oxide) complexes. II. Poly (ethylene oxide)–mercuric chloride complex. J Polym Sci 6(A2):1509

    Google Scholar 

  • Jiang et al (2012) Conductive polymer patterned electrode for pacing. Cardiac Pacemakers Inc. https://patents.google.com/patent/US8311606

  • Jonas F, Heywang G (1994) Technical applications for conductive polymers. Electrochim Acta 39(8–9):1345–1347

    Article  CAS  Google Scholar 

  • Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28(5):1721–1723

    Article  CAS  Google Scholar 

  • Kim DH, Richardson-Burns SM, Hendricks JL, Sequera C, Martin DC (2007) Effect of immobilized nerve growth factor on conductive polymers: electrical properties and cellular response. Adv Funct Mater 17(1):79–86

    Article  CAS  Google Scholar 

  • Kumar A, Singh R, Gopinathan SP, Kumar A (2012) Solvent free chemical oxidative polymerization as a universal method for the synthesis of ultra high molecular weight conjugated polymers based on 3, 4-propylenedioxythiophenes. Chem Commun 48(40):4905–4907

    Article  CAS  Google Scholar 

  • Kweon OY, Lee SJ, Oh JH (2018) Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater 10(6):540–551

    Article  CAS  Google Scholar 

  • Laakso J, Österholm JE, Nyholm P (1989) Conducting polymer blends. Synth Met 28(1–2):467–471

    Article  Google Scholar 

  • Lam JW, Tang BZ (2005) Functional polyacetylenes. Acc Chem Res 38(9):745–754

    Article  CAS  PubMed  Google Scholar 

  • Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9(4):150

    Article  PubMed Central  Google Scholar 

  • Lee JY, Lee JW, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6(38):801–810

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Luo X, Huang J, Cui XT, Yun M (2012) Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2(2):205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennox AJ, Lloyd-Jones GC (2014) Selection of boron reagents for Suzuki–Miyaura coupling. Chem Soc Rev 43(1):412–443

    Article  CAS  PubMed  Google Scholar 

  • Linford RG (1993) Electrical and electrochemical properties of ion conducting polymers. In: Applications of electroactive polymers. Springer, Dordrecht, pp 1–28

    Google Scholar 

  • Loewe RS, Ewbank PC, Liu J, Zhai L, McCullough RD (2001) Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the GRIM method: investigation of the reaction and the origin of Regioselectivity. Macromolecules 34(13):4324–4333

    Article  CAS  Google Scholar 

  • Lundberg RD, Bailey FE, Callard RW (1966) Interactions of inorganic salts with poly(ethylene oxide) J Polym Sci 4(Al):1563

    Google Scholar 

  • McClellan M, Brown N, Califf RM, Warner JJ (2019) Call to action: urgent challenges in cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 139:e44–e54

    Article  PubMed  Google Scholar 

  • Meador MAB, Hardy-Green D, Auping JV, Gaier JR, Ferrara LA, Papadopoulos DS et al (1997) Optimization of electrically conductive films: poly (3-methylthiophene) or polypyrrole in Kapton. J Appl Polym Sci 63(7):821–834

    Article  CAS  Google Scholar 

  • Mihic A, Cui Z, Wu J, Vlacic G, Miyagi Y, Li S, Li R (2015) A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation 132(8):772–784

    Article  CAS  PubMed  Google Scholar 

  • Mocanin J, Cuddihy EF (1966) J Polym Sci 14(C):311

    Google Scholar 

  • Moheimani F, Jackson DE (2011) Venous thromboembolism: classification, risk factors, diagnosis, and management. ISRN Hematology 2011:1–7

    Article  Google Scholar 

  • Munshi Z (2001) Defibrillator housing with conductive polymer coating. Intermedics Inc. https://patents.google.com/patent/US6295474

  • Musumeci C, Hutchison JA, Samorì P (2013) Controlling the morphology of conductive PEDOT by in situ electropolymerization: from thin films to nanowires with variable electrical properties. Nanoscale 5(17):7756–7761

    Article  CAS  PubMed  Google Scholar 

  • Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118(14):6766–6843

    Article  CAS  PubMed  Google Scholar 

  • Okner R, Oron M, Tal N, Mandler D, Domb AJ (2007) Electrocoating of stainless steel coronary stents for extended release of paclitaxel. Mater Sci Eng C 27(3):510–513

    Article  CAS  Google Scholar 

  • Olin JW, Sealove BA (2010) Peripheral artery disease: current insight into the disease and its diagnosis and management. Mayo Clin Proc 85(7):678–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Pani D, Dessi A, Saenz-Cogollo JF, Barabino G, Fraboni B, Bonfiglio A (2016) Fully textile, PEDOT:PSS based electrodes for wearable ECG monitoring systems. IEEE Trans Biomed Eng 63(3):540–549

    Article  PubMed  Google Scholar 

  • Pani D, Achilli A, Bonfiglio A (2018) Survey on textile electrode technologies for electrocardiographic (ECG) monitoring, from metal wires to polymers. Adv Mater Technol 3(10):1800008

    Article  Google Scholar 

  • Pappachan J, Kirkham FJ (2008) Cerebrovascular disease and stroke. Arch Dis Child 93(10):890–898

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Jung J, Chang M (2019) Research progress on conducting polymer-based biomedical applications. Appl Sci 9(6):1070

    Article  CAS  Google Scholar 

  • Puckert C, Gelmi A, Ljunggren MK, Rafat M, Jager EWH (2016) Optimisation of conductive polymer biomaterials for cardiac progenitor cells. RSC Adv 6(67):62270–62277

    Article  CAS  Google Scholar 

  • Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(suppl_5):S559–S579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29(5):283–293

    Article  Google Scholar 

  • Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57(12):1295–1325

    Article  CAS  Google Scholar 

  • Šišáková M, Asaumi Y, Uda M, Seike M, Oyama K, Higashimoto S et al (2020) Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polym J 52:589–599

    Article  Google Scholar 

  • Stefan MC, Bhatt MP, Sista P, Magurudeniya HD (2012) Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly (3-hexylthiophene). Polym Chem 3(7):1693–1701

    Article  CAS  Google Scholar 

  • Ten Hoeve W, Wynberg H, Havinga EE, Meijer EW (1991) Substituted 2, 2': 5', 2'': 5'', 2''': 5''', 2'''': 5'''', 2''''': 5''''', 2'''''': 5'''''', 2''''''': 5''''''', 2'''''''': 5'''''''', 2''''''''': 5''''''''', 2''''''''''-undecithiophenes, the longest characterized oligothiophenes. J Am Chem Soc 113(15):5887–5889

    Article  Google Scholar 

  • Tomczykowa M, Plonska-Brzezinska ME (2019) Conducting polymers, hydrogels and their composites: preparation, properties and bioapplications. Polymers 11(2):350

    Article  PubMed Central  Google Scholar 

  • Walton DJ (1991) Electrically conducting polymers. In: Miller LS, Mullin JB (eds) Electronic materials. Springer, Boston, MA

    Google Scholar 

  • Wang D, Gao S (2014) Sonogashira coupling in natural product synthesis. Org Chem Front 1(5):556–566

    Article  CAS  Google Scholar 

  • Wang Wang J, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117(20):5614–5615

    Article  Google Scholar 

  • Wang X, Liu Z, Zhang T (2017) Wearable electronics: flexible sensing electronics for wearable/attachable health monitoring (small 25/2017). Small 13(25)

    Google Scholar 

  • Watkins DA, Beaton AZ, Carapetis JR, Karthikeyan G, Mayosi BM, Wyber R, Yacoub MH, Zühlke LJ (2018) Rheumatic heart diseases worldwide. J Am Coll Cardiol 72(12):1397–1416

    Article  PubMed  Google Scholar 

  • Weigel T, Schmitz T, Pfister T, Gaetzner S, Jannasch M, Al-Hijailan R, Hansmann J (2018) A three-dimensional hybrid pacemaker electrode seamlessly integrates into engineered, functional human cardiac tissue in vitro. Sci Rep 8(1):14545

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu XH, Yang X, Zheng CG, Cui Y (2020) Recent advances in the design of cardiovascular materials for biomedical applications. Regen Med 15(5):1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Yang M-C, Tsou H-M, Hsiao Y-S, Cheng Y-W, Liu C-C, Huang L-Y, Peng X-Y, Liu T-Y, Yung M-C, Hsu C-C (2019) Electrochemical polymerization of PEDOT–graphene oxide–heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers 11:1520

    Article  CAS  PubMed Central  Google Scholar 

  • Yeole N (2010) Thiocarbonylthio compounds. Synlett 2010(10):1572–1573

    Article  Google Scholar 

  • Yin W, Li J, Gu T, Wu J (1997) Design and synthesis of conducting secondary crosslinked interpenetrating polymer network. J Appl Polym Sci 63(1):13–16

    Article  CAS  Google Scholar 

  • Yokoyama M, Ishihara H, Iwamoto R, Tadokoro H (1969) Macromolecules 2:184

    Article  CAS  Google Scholar 

  • Yokoyama A, Miyakoshi R, Yokozawa T (2004) Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules 37(4):1169–1171

    Article  CAS  Google Scholar 

  • Zhang C, Hsieh M-H, Wu S-Y, Li S-H, Wu J, Liu S-M, Li R-K (2019) A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials 231:119672

    Article  PubMed  Google Scholar 

  • Zhou Y, Ding X, Zhang J, Duan Y, Hu J, Yang X (2014) Fabrication of conductive fabric as textile electrode for ECG monitoring. Fibers Polym 15(11):2260–2264

    Article  CAS  Google Scholar 

  • Zotti G, Salmaso R, Gallazzi MC, Marin RA (1997) In situ conductivity of a polythiophene from a branched alkoxy-substituted tetrathiophene. Enhancement of conductivity by conjugated cross-linking of polymer chains. Chem Mater 9(3):791–795

    Article  CAS  Google Scholar 

Download references

Acknowledgment

B.Y. acknowledges support from HFSP (RGY0074/2016), HEC for NRPU (Project No. 20-1740/R&D/10/3368, 20-1799/R&D/10-5302, and 5922), TDF-033 grants, and LUMS for start-up fund and FIF grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basit Yameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arshad, A., Irfan, H., Iftikhar, S., Yameen, B. (2022). Conductive Polymers for Cardiovascular Applications. In: Pandey, L.M., Hasan, A. (eds) Nanoscale Engineering of Biomaterials: Properties and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-16-3667-7_12

Download citation

Publish with us

Policies and ethics