Skip to main content

Analysis and Design of Surface Plasmon Resonance Waveguide for Sensing Application

  • Chapter
  • First Online:
Book cover Micro and Nanoelectronics Devices, Circuits and Systems

Abstract

A surface plasmon resonance waveguide sensor operating in the visible wavelength range is presented for refractive index-based sensing. The silver material is used because of its chemical stability and its strong electromagnetic fields on surface of the nanoparticle. The simulation and modeling of surface plasmon resonance sensor are discussed. The aluminum oxide surface coating material improves the resonance of the sensor because of its stable material properties in optical and chemical application. The three modes of the sensor discussed here are transfer electric, transfer magnetic and the surface plasmon waveguide mode. The effective index value of 1.5178 is observed for the surface plasmon mode of the SPR waveguide sensor. The attenuation loss of 21 dB/cm is obtained at visible wavelength. The sensitivity when averaged for two analyte refractive index is 354 nm/refractive index unit (RIU). The proposed surface plasmons resonance sensor is used as refractive index-based sensor for environmental and chemical monitoring. This proposed work can be used to sense analyte refractive index based on the variation of the change in the resonant wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavers CR, Wilkinson JS (1994) A waveguide-coupled surface-plasmon sensor for an aqueous environment. Sens Actuators, B Chem 22(1):75–81

    Article  Google Scholar 

  2. Zhang P, Liu L, He Y, Ji Y, Ma H (2015) Self- referenced plasmon waveguide resonance sensor using different waveguide modes. J Sens

    Google Scholar 

  3. Čtyroký J, Homola J, Lambeck PV, Musa S, Hoekstra HJWM, Harris RD, Wilkinson JS, Usievich B, Lyndin NM (1999) Theory and modelling of optical waveguide sensors utilising surface plasmon resonance. Sens Actuators, B Chem 54(1–2):66–73

    Article  Google Scholar 

  4. Salamon Z, Macleod HA, Tollin G (1997) Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J 73(5):2791–2797

    Google Scholar 

  5. Harris RD, Wilkinson JS (1995) Waveguide surface plasmon resonance sensors. Sens Actuators B: Chem 29(1–3):261–267

    Google Scholar 

  6. Daghestani HN, Day BW (2010) Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 10(11):9630–9646

    Article  Google Scholar 

  7. Raether H (1988) Surface plasmons on smooth surfaces. In: Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin, Heidelberg, pp 4–39

    Google Scholar 

  8. Voronin KV, Stebunov YV, Voronov AA, Arsenin AV, Volkov VS (2020) Vertically coupled plasmonic racetrack ring resonator for biosensor applications. Sensors 20(1):203

    Article  Google Scholar 

  9. Kumari S, Mani Tripathi S (2019) Plasmonic waveguide based optical ring resonator for bio-sensing application. In: 2019 workshop on recent advances in photonics (WRAP). IEEE, pp 1–3

    Google Scholar 

  10. Weeber J-C, Lacroute Y, Dereux A. (2003) Optical near-field distributions of surface plasmon waveguide modes. Phys Rev B 68(11):115401

    Google Scholar 

  11. Steinberger B, Hohenau A, Ditlbacher H, Stepanov AL, Drezet A, Aussenegg FR, Leitner A, Krenn JR (2006) Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88(9):094104

    Google Scholar 

  12. Hochberg M, Baehr-Jones T, Walker C, Scherer A (2004) Integrated plasmon and dielectric waveguides. Opt Express 12(22):5481–5486

    Article  Google Scholar 

  13. Vlček J, Pištora J, Lesňák M (2019) Design of plasmonic-waveguidingstructuresforsensor applications. Nanomaterials 9(9):1227

    Article  Google Scholar 

  14. Rajora S, Rajput SK (2016) Multilayer coatings with slotted MDM surface plasmon waveguide for the improvement of sensitivity and transmission with high refractive index material. In: 2016 International conference on computing, communication and automation (ICCCA). IEEE, pp 1484–1487

    Google Scholar 

  15. Khatri A, Dhawangale A, Mukherji S (2018) Surface plasmon resonance-based sensor using polyester OHP sheet waveguides. In: 2018 12th international conference on sensing technology (ICST). IEEE, pp 123–126

    Google Scholar 

  16. Chien F-C, Chen S-J (204) A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens Bioelectron 20(3):633–642

    Google Scholar 

  17. Abbas A, Linman MJ, Cheng Q (2011) Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors. Sens Actuators B Chem 156(1):169–175

    Article  Google Scholar 

  18. Krishnaswamy N, Srinivas T, Mohan Rao G, Manoj Varma M (2013) Analysis of integrated opt fluidic lab-on-a-chip sensor based on refractive index and absorbance sensing. IEEE Sens J 13(5):1730–1741

    Google Scholar 

  19. Hassan, MdF, Hasan MdM, Radoan M, Sagor RH (2020) Design and performance analysis of an ultra-compact nano-plasmonic refractive index sensor. In: 2020 8th international electrical engineering congress (iEECON). IEEE, pp 1–5

    Google Scholar 

  20. Tian D, Kianinejad A, Zhang A, Chen ZN (2019) Graphene-based dynamically tunable attenuator on spoof surface plasmon polaritons waveguide. IEEE Microwave Wireless Componen Lett 29(6):388–390

    Google Scholar 

  21. Venkatesha M, Bhat SV, Prakash S, Rajan B, Narayan K (2019) Power coupling and modal analysis of SPR based gap waveguides for optical sensing applications. In: 2019 IEEE sensors. IEEE, pp 1–4

    Google Scholar 

  22. Lee H, Linfeng Xu, Koh D, Nyayapathi N, Oh KW (2014) Various on-chip sensors with microfluidics for biological applications. Sensors 14(9):17008–17036

    Article  Google Scholar 

  23. Hossain, Md, Rana Md (2016) DNA hybridization detection based on resonance frequency readout in grapheme on Au SPR biosensor. J Sens

    Google Scholar 

  24. Lazareva EN, Tuchin VV (2018) Measurement of refractive index of hemoglobin in the visible/NIR spectral range. J Biomed Opt 23(3):0350

    Article  Google Scholar 

  25. Kumar P, Wiedmann MK, Winter CH, Avrutsky I (2009) Optical properties of Al2O3 thin films grown by atomic layer deposition. Appl Opt 48(28):5407–5412

    Article  Google Scholar 

  26. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  27. Lazareva EN, Tuchin VV (2018) Blood refractive index modelling in the visible and near infrared spectral regions. J Biomed Photon Eng 4(1)

    Google Scholar 

  28. Faick CA, Finn AN (1931) The index of refraction of some soda-lime-silica glasses as a function of the composition 1. J Am Ceram Soc 14(7):518–528

    Article  Google Scholar 

  29. Ahmadi L, Hiltunen M, Hiltunen J, Aikio S, Saarinen J, Honkanen S, Roussey M (2017) Influence of an Al2O3 surface coating on the response of polymeric waveguide sensors. Opt Express 25(21):25102–25112

    Article  Google Scholar 

Download references

Acknowledgements

The authors would to like thank VGST IT, BT and ST, Government of Karnataka, for the sanctioned project VGST/CSIEE/GRD-466. A special thanks to SVIT, Bengaluru, and VTU, Belagavi, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Suryanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suryanarayana, N.K., Asha, K., Guha, K., Krishnaswamy, N. (2022). Analysis and Design of Surface Plasmon Resonance Waveguide for Sensing Application. In: Lenka, T.R., Misra, D., Biswas, A. (eds) Micro and Nanoelectronics Devices, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 781. Springer, Singapore. https://doi.org/10.1007/978-981-16-3767-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3767-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3766-7

  • Online ISBN: 978-981-16-3767-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics