Skip to main content

Photograph to X-ray Image Translation for Anatomical Mouse Mapping in Preclinical Nuclear Molecular Imaging

  • Conference paper
  • First Online:
Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021) (MICAD 2021)

Abstract

We present preliminary results of an off-the-shelf approach for the translation of a photographic mouse image to an X-ray scan for anatomical mouse mapping, but not for diagnosis, in functional 2D molecular imaging techniques, such radionuclide and optical imaging. It is well known that preclinical molecular imaging accelerates the drug development process. However, commercial imaging systems have high purchase cost, require high service contracts, special facilities and trained staff. As an alternative, planar molecular imaging systems provide several advantages including lower complexity and decreased cost among others, making them affordable to small and medium sized groups which work in the field, bridging the gap between biodistributions studies and 3D imaging systems. A pix2pix network was trained to predict a realistic X-ray mouse image from a photographic one (simplifying the hardware and cost requirement compared to standard X-rays), giving the potential to have an anatomical map of the mouse, along with the functional information of a molecular planar imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomes, C., Abrunhosa, A., Ramos, P., Pauwels, K.: Molecular imaging with SPECT as a tool for drug development. Adv. Drug Deliv. Rev. 63(7), 547–554 (2010). https://doi.org/10.1016/j.addr.2010.09.015

    Article  Google Scholar 

  2. Willmann, J., van Bruggen, N., Dinkelborg, L., Gambhir, S.: Molecular imaging in drug development. Nat. Rev. Drug Disc. 7, 591–607 (2008). https://doi.org/10.1038/nrd2290

    Article  Google Scholar 

  3. Waaijer, S., et al.: Molecular imaging in cancer drug development. J. Nucl. Med. 59, 726–732 (2018). https://doi.org/10.2967/junmed.116.188045

    Article  Google Scholar 

  4. Cherry, S.: In vivo molecular and genomic imaging: new challenges for imaging physics. Phys. Med. Biol. 3(7), R13 (2004). https://doi.org/10.1088/0031-9155/49/3/r01

    Article  Google Scholar 

  5. Cherry, S.: Multimodality imaging: beyond PET/CT and SPECT/CT. Semin. Nucl. Med. 39(5), 348–353 (2009). https://doi.org/10.1053/j.semnuclmed.2009.03.001

    Article  Google Scholar 

  6. Vandenberghe, S., Marsden, P.: PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Med. Biol. 60, R115 (2015). https://doi.org/10.1088/0031-9155/60/4/r115

    Article  Google Scholar 

  7. Zanzonico, P.: Principles of nuclear medicine imaging: planar, SPECT, PET, multimodality, and autoradiography systems. Radiat. Res. 177, 349–364 (2012). https://doi.org/10.1667/rr2577.1

    Article  Google Scholar 

  8. Zaidi, H. (ed.): Molecular Imaging of Small Animals: Instrumentation and Applications. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0894-3

    Book  Google Scholar 

  9. Kumar, D., et al.: Development of technetium-99m labeled ultrafine gold nanobioconjugates for targeted imaging of folate receptor positive cancers. Nucl. Med. Biol. 93, 1–10 (2020). https://doi.org/10.1016/j.nucmedbio.2020.11.001

    Article  Google Scholar 

  10. Vorobyeva, A., et al.: Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Scient. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-45795-8

    Article  Google Scholar 

  11. De Kruijff, R., et al.: Elucidating the influence of tumor presence on the polymersor time in mice. Pharmaceutics 11, 241 (2019). https://doi.org/10.3390/pharmaceutics11050241

    Article  Google Scholar 

  12. Ntziachristos, V., et al.: Planar fluorescence imaging using normalized data. J. Biomed. Opt. 10 (2005). https://doi.org/10.1117/1.2136148

  13. Georgiou, M., Fysikopoulos, E., Mikropoulos, K., Fragogeorgi, E., Loudos, G.: Characterization of “γ-eye”: a low-cost benchtop mouse-sized gamma camera for dynamic and static imaging studies. Mol. Imag. Biol. 19(3), 398–407 (2016). https://doi.org/10.1007/s11307-016-1011-4

    Article  Google Scholar 

  14. Zhang, H., et al.: Performance evaluation of PETbox: a low cost bench top preclinical PET scanner. Mol. Imag. Biol. 13(5), 949–961 (2011). https://doi.org/10.1007/s11307-010-0413-y

    Article  Google Scholar 

  15. Rouchota, M., et al.: A prototype PET/SPET/X-rays scanner dedicated for whole body small animal studies. Hell. J. Nucl. Med. 20, 146–153 (2017). https://doi.org/10.1967/s0022449910556

    Article  Google Scholar 

  16. Eslami, M., Tabarestani, S., Albarqouni, S., Adell, E., Navab, N., Adjouadi, M.: Image to images translation for multi-task organ segmentation and bone suppression in chest X-ray radiography. IEEE Trans. Med. Imag. 39, 2553–2565 (2020). https://doi.org/10.1109/TMI.2020.2974159

    Article  Google Scholar 

  17. Kaji, S., Kida, S.: Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol. Phys. Technol. 12(3), 235–248 (2019). https://doi.org/10.1007/s12194-019-00520-y

    Article  Google Scholar 

  18. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition Proceedings (2017). arXiv:1611.07004

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016)

    Google Scholar 

  21. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 18–22 June (2018)

    Google Scholar 

  22. Yoo, J., Eom, H., Choi, Y.: Image-to-image translation using a cross-domain auto-encoder and decoder. Appl. Sci. 9(22), 4780 (2019)

    Article  Google Scholar 

  23. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Giorgos Tolias, assistant professor at the Czech Technical University in Prague, for helpful discussions.

This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Program “Human Resources Development, Education and Lifelong Learning 2014–2020” in the context of the project “Deep learning algorithms for molecular imaging applications” (MIS-5050329).

The publication of this research is funded by the University of West Attica, Greece.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fysikopoulos, E. et al. (2022). Photograph to X-ray Image Translation for Anatomical Mouse Mapping in Preclinical Nuclear Molecular Imaging. In: Su, R., Zhang, YD., Liu, H. (eds) Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021). MICAD 2021. Lecture Notes in Electrical Engineering, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-16-3880-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3880-0_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3879-4

  • Online ISBN: 978-981-16-3880-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics