Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 308 Accesses

Abstract

Lignocellulosic biomass as an abundant source of renewable carbon has received ample interest for the production of fuels and chemicals. Reducing recalcitrance of biomass in a cost-effective way is a challenge to commercialize biomass-based technologies. Deep eutectic solvents (DESs) are emerging as a new “green” solvents that have a high potential for biomass processing. This chapter presents background and general information on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • A. Abo-Hamad, M. Hayyan, M.A. Alsaadi, M.A. Hashim, Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 273, 551–567 (2015)

    Article  CAS  Google Scholar 

  • S. Achinas, G.J.W. Euverink, Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 23, 44–53 (2016)

    Article  Google Scholar 

  • V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, D.B. Levin, Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29, 675–685 (2011)

    Article  CAS  PubMed  Google Scholar 

  • R. Agrawal, R. Gaur, A. Mathur, R. Kumar, R.P. Gupta, D.K. Tuli, A. Satlewal, Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Adv. 5(87), 71462–71471 (2015)

    Article  CAS  Google Scholar 

  • E.M. Anderson, M.L. Stone, R. Katahira, M. Reed, W. Muchero, K.J. Ramirez et al., Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nat. Commun. 10, 2033–2043 (2019). https://doi.org/10.1038/s41467-019-09986-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G.C. Avgerinos, D.I.C. Wang, Selective delignification for fermentation of enhancement. Biotechnol Bioeng 25, 67–83 (1983)

    Article  CAS  PubMed  Google Scholar 

  • P. Bajpai, Pretreatment of lignocellulosic biomass for biofuel production. Springer Briefs in Molecular Science, Springer Nature (2016)

    Google Scholar 

  • E.C. Bensah, M. Mensah (2009) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations Hindawi Publishing Corporation. Int. J. Chem. Eng. 2013, 21 p, Article ID 719607. http://dx.doi.org/https://doi.org/10.1155/2013/719607

  • R. Chandra, R. Bura, W. Mabee, A. Berlin, X. Pan, J. Saddler, Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108, 67–93 (2007)

    CAS  PubMed  Google Scholar 

  • V. Chaturvedi, P. Verma, An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech 3, 415–431 (2013). https://doi.org/10.1007/s13205-013-0167-8

  • S. Dahadha, Z. Amin, A.A. Bazyar Lakeh, E. Elbeshbishy, Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuels. 31, 10335–10347 (2017). https://doi.org/10.1021/acs.energyfuels.7b02045

  • B.E. Dale, Cellulose pretreatment: technology and techniques. Annu. Rev. Ferment Proc. 8, 299–323 (1985)

    Article  CAS  Google Scholar 

  • R.P. de Vries, J. Visser, Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  • A.L. Demain, M. Newcomb, J.H.D. Wu, Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69, 124–154 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Demirbas, Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sour 27(4), 327–337 (2005)

    Article  CAS  Google Scholar 

  • DOE BP (2009) Biomass program. http://www1.eere.energy.gov/biomass/

  • T. Eggeman, R.T. Elander, Process and economic analysis of pretreatment technologies. Biores Technol. 96, 2019–2025 (2005)

    Article  CAS  Google Scholar 

  • A.B. Guerrero, P.L. Aguado, J. Sanchez, M.D. Curt, GIS based assessment of banana residual biomass potential for ethanol production and power generation: a case study. Waste Biomass Valoriz 7(2), 405–415 (2016)

    Google Scholar 

  • T. Haregewine, L. Rafael, Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ. Sci. 4, 3913–3929 (2011).

    Google Scholar 

  • S.S. Hassan, G.A. Williams, A.K. Jaiswal, Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew. Sust. Energ. Rev. 101, 590–599 (2019). https://doi.org/10.1016/j.rser.2018.11.041

    Article  CAS  Google Scholar 

  • M.E. Himmel, S.-Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, T.D. Foust, Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007)

    Article  CAS  PubMed  Google Scholar 

  • X.-D. Hou, G.-J. Feng, M. Ye, C.-M. Huang, Y. Zhang, Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238, 139–146 (2017)

    Article  CAS  PubMed  Google Scholar 

  • H.M.N. Iqbal, G. Kyazze, T. Keshavarz, Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8(2), 3157–3176 (2013)

    Article  Google Scholar 

  • H. Jorgensen, J.B. Kristensen, C. Felby, Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2), 119–134 (2007)

    Article  CAS  Google Scholar 

  • J.D. Kabongo, Waste valorization, in Encyclopedia of corporate social responsibility. ed. by S.O. Idowu, N. Capaldi, L. Zu, A.D. Gupta (Springer, Heidelberg, 2013), pp. 2701–2706

    Chapter  Google Scholar 

  • A.K. Kumar, B.S. Parikh, M. Pravakar, Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut Res. 23(10), 9265–9275 (2016)

    Article  CAS  Google Scholar 

  • P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    Article  CAS  Google Scholar 

  • M.R. Ladisch, R.L. Waugh, P. Westgate, K. Kohlmann, R. Hendrickson, Y. Yang, C. Ladisch, Intercalation in the pretreatment of cellulose. ACS Symp. Ser. 515, 509–519 (1992)

    Google Scholar 

  • R. Liguori, A. Amore, V. Faraco, Waste valorization by biotechnological conversion into added value products. Appl. Microbiol. Biotechnol. 97(14), 6129–6147 (2013)

    Article  CAS  PubMed  Google Scholar 

  • K.W. Lin, M.R. Ladisch, D.M. Schaeffer, C.H. Noller, V. Lechtenberg, G.T. Tsao, Review on effect of pretreatment on digestibility of cellulosic materials. AIChE Sym. Ser. 203, 102–106 (1981)

    Google Scholar 

  • Y.-L. Loow, T.Y. Wu, Y.S. Lim, K.A. Tan, L.F. Siow, J.M. Jahim, A.W. Mohammad, Improvement of xylose recovery Cellulose from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Conv. Manag. 138, 248–260 (2017)

    Article  CAS  Google Scholar 

  • J. Luo, Z. Fang, R.L. Smith Jr., Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust 41(1), 56–93 (2014)

    Article  Google Scholar 

  • L.R. Lynd, Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Env 21, 403–465 (1996)

    Article  Google Scholar 

  • L.R. Lynd, J.H. Cushman, R.J. Nichols, C.E. Wyman, Fuel ethanol from cellulosic biomass. Science 251, 1318–1323 (1991)

    Article  CAS  PubMed  Google Scholar 

  • L.R. Lynd, H. Jin, J.G. Michels, C.E. Wyman, B. Dale, Bioenergy: Background, Potential, and Policy (Center for Strategic and International Studies, Washington, D.C., 2003)

    Google Scholar 

  • L.R. Lynd, M.S. Laser, D. Bransby, B.E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J.D. McMillan, J. Sheehan et al., How biotech can transform biofuels. Nat Biotechnol 26(2), 169–172 (2008)

    Article  CAS  PubMed  Google Scholar 

  • L.R. Lynd, P.J. Weimer, W.H. van Zyl, I.S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66, 506–577 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L.R. Lynd, C.E. Wyman, T.U. Gerngross, Biocommodity engineering. Biotechnol Prog 15, 777–793 (1999)

    Article  CAS  PubMed  Google Scholar 

  • J.D. McMillan, Pretreatment of lignocellulosic biomass, in Enzymatic conversion of Biomass for Fuels production. ed. by M.E. Himmel, J.O. Baker, R.P. Overend (American Chemical Society, Washington, 1994), pp. 292–324

    Chapter  Google Scholar 

  • M. Michelin, M.L.T.M. Polizeli, D.S. Ruzene, D.P. Silva, J.A. Teixeira, Application of lignocellulosic residues in the production of cellulases and hemicellulases from fungi, in Fungal enzymes. ed. by M.L.T.M. Polizeli, M. Rai (CRC Press/Taylor & Francis, Boca Raton, 2013), pp. 31–64

    Google Scholar 

  • N. Mosier, C.E. Wyman, B.E. Dale, R.T. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96, 673–686 (2005)

    Article  CAS  Google Scholar 

  • Moxley GM (2007) Studies of cellulosic ethanol production from lignocellulose. Virginia Tech, Blacksburg, p 78

    Google Scholar 

  • Office of Energy Efficiency and Renewable Energy, Office of Science (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. A research roadmap resulting from the biomass to biofuels workshop. http://www.doegenomestolife.org/biofuels/

  • V.K.D. Oliveira, C. Gregory, J. François, Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7(8), 1250–1260 (2015)

    Article  CAS  Google Scholar 

  • A. Procentese, E. Johnson, V. Orr, A. Garruto Campanile, J.A. Wood, A. Marzocchella, L. Rehmann, Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. Technol. 192, 31–36 (2015)

    Google Scholar 

  • A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick Jr., J.P. Hallett, D.J. Leak, C.L. Liotta, The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006)

    Article  CAS  PubMed  Google Scholar 

  • N. Sathisuksanoh, Z. Zhu, J. Rollin, Y.-H. Zhang, Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF), in Bioalcohol Production ed. by K. Waldron (Woodheading publishing, UK)

    Google Scholar 

  • A. Satlewal, R. Agrawal, S. Bhagia, J. Sangoro, A.J. Ragauskas, Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol. Adv. 36(8), 2032–2050 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83, 1–11 (2002)

    Article  CAS  Google Scholar 

  • W. Thompson, S. Meyer, Second generation biofuels and food crops: co-products or competitors. Glob Food Secur 2, 89–96 (2013)

    Article  Google Scholar 

  • D.J.G.P. van Osch, L.J.B.M. Kollau, A. van den Bruinhorst, S. Asikainen, M.A.A. Rocha, M.C. Kroon, Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. PCCP 19(4), 2636–2665 (2017)

    Article  PubMed  CAS  Google Scholar 

  • A.A. Vertès, M. Inui, H. Yukawa, Implementing biofuels on a global scale. Nat. Biotechnol. 24, 761–764 (2006)

    Article  PubMed  CAS  Google Scholar 

  • K. Wilkie, The hemicelluloses of grasses and cereals. Adv. Carbohydr Chem. Biochem. 36(1), 215–264 (1979)

    Article  CAS  Google Scholar 

  • C.E. Wyman, What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25(4), 153–157 (2007)

    Article  CAS  PubMed  Google Scholar 

  • C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Biores. Technol. 96, 2026–2032 (2005)

    Article  CAS  Google Scholar 

  • C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, Coordinated development of leading biomass pretreatment technologies. Biores Technol. 96, 1959–1966 (2005)

    Article  CAS  Google Scholar 

  • G.-C. Xu, J.-C. Ding, R.-Z. Han, J.-J. Dong, Y. Ni, Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Biores. Technol. 203, 364–369 (2016)

    Article  CAS  Google Scholar 

  • B. Yang, C.E. Wyman, Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1), 26–40 (2008)

    Article  CAS  Google Scholar 

  • C.G. Yoo, Y. Pu, A.J. Ragauskas, Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Curr. Opin. Green. Sustain. Chem. 5, 5–11 (2017)

    Article  Google Scholar 

  • N.N.A.N. Yusuf, S.K. Kamarudin, Z. Yaakub, Overview on the current trends in biodiesel production. Energy Convers Manag. 52, 2741–2751 (2011)

    Article  CAS  Google Scholar 

  • Y.-H.P. Zhang, S.-Y. Ding, J.R. Mielenz, R. Elander, M. Laser, M. Himmel, J.D. McMillan, L.R. Lynd, Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97(2), 214–223 (2007)

    Article  CAS  PubMed  Google Scholar 

  • S. Zulkefli, E. Abdulmalek, M.B. Abdul Rahman, Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew. Energ. 107, 36–41 (2017)

    Article  CAS  Google Scholar 

  • J.D. McMillan, Bioethanol production: status and prospects. Renew Energy 10(2–3), 295– 302 (1997)

    Google Scholar 

  • Y. Zheng, Z. Pan, R. Zhang, Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2, 51–68 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Bajpai .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2021). Background and General Information. In: Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4013-1_1

Download citation

Publish with us

Policies and ethics