Skip to main content

Social Behavior of Earthworms in the Context of Their Use in Bioremediation

  • Conference paper
  • First Online:
  • 412 Accesses

Abstract

The role of earthworms as one of three most influential classes of scavengers and soil processors in nature—the other two being ants and termites—is well known. But whereas ants and termites are strongly eusocial and hierarchical, with no one except the queen being capable of pro-creation, majority of adult earthworms have fecundity. This makes it possible to use them in captivity. As a result, earthworms have come on center stage as processors of animal manure, plant biomass, and other biodegradable solid/semi-solid waste into organic fertilizer. This chapter explores the sociobiology of earthworms. Its main focus is on identifying those traits which can prove helpful in enhancing the utility of earthworms in bioremediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reynolds, J. W., & Wetzel, M. J. (2004). Nomenclatura Oligochaetologica. Supplementum Quartum. A catalogue of names, descriptions and type specimens of the Oligochaeta. Illinois Natural History Survey Special Publication.

    Google Scholar 

  2. Edwards, C. A., Arancon, N. Q., & Sherman, R. L. (eds.) (2010). Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press.

    Google Scholar 

  3. Drumond, M. A., Guimaraes, A. Q., & da Silva, R. H. P. (2015). The role of local knowledge and traditional extraction practices in the management of giant earthworms in Brazil. PLoS ONE, 10(4),

    Article  Google Scholar 

  4. Darwin, C. R. (1881). The formation of vegetable mould through the action of worms, with observations on their habitats. London: Murray.

    Book  Google Scholar 

  5. Bouché, M. B. (1977). Strategies lombriciennes. In: Lohm, U. & Persson, T. (Eds.), Soil Organisms as Components of Ecosystems. Biol. Bull. 25, 122–132.

    Google Scholar 

  6. Edwards, C. A. (ed.) (2004). Earthworm ecology. CRC Press.

    Google Scholar 

  7. Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., et al. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(2), 161–182.

    Article  Google Scholar 

  8. Jouquet, P., Blanchart, E., & Capowiez, Y. (2014). Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology, 73, 34–40.

    Article  Google Scholar 

  9. Sharma, S., Kumar, A., Singh, A. P., & Vasudevan, P. (2009). Earthworms and vermitechnology–A review. Dynamic soil, Dynamic plant, 3(2), 1–12.

    Google Scholar 

  10. Hussain, N., & Abbasi, S. A. (2018). Efficacy of the vermicomposts of different organic wastes as “clean” fertilizers: state-of-the-art. Sustainability, 10(4), 1205.

    Article  Google Scholar 

  11. Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M. M., Syed, J. H., et al. (2015). A review on vermicomposting of organic wastes. Environmental Progress & Sustainable Energy, 34(4), 1050–1062.

    Article  Google Scholar 

  12. Abbasi, S. A., Nayeem-Shah, M., & Abbasi, T. (2015). Vermicomposting of phytomass: limitations of the past approaches and the emerging directions. Journal of Cleaner Production, 93, 103–114.

    Article  Google Scholar 

  13. Abbasi, T., & Abbasi, S. A. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renewable and sustainable energyreviews, 14(3), 919–937.

    Article  Google Scholar 

  14. Abbasi, T., & Abbasi, S. A. (2012). Is the use of renewable energy sources an answer to the problems of global warming and pollution?. Critical Reviews in Environmental Science and Technology, 42(2), 99–154.

    Google Scholar 

  15. Karthikeyan, M., Hussain, N., Gajalakshmi, S., & Abbasi, S. A. (2014). Effect of vermicast generated from an allelopathic weed lantana (Lantana camara) on seed germination, plant growth, and yield of cluster bean (Cyamopsis tetragonoloba). Environmental Science and Pollution Research, 21(21), 12539–12548.

    Article  Google Scholar 

  16. Hussain, N., Abbasi, T., & Abbasi, S. A. (2015). Vermicomposting eliminates the toxicity of Lantana (Lantana camara) and turns it into a plant friendly organic fertilizer. Journal of Hazardous Materials, 298, 46–57.

    Article  Google Scholar 

  17. Patnaik, P., Abbasi, T., & Abbasi, S. A. (2020). Vermicompost of the widespread and toxic xerophyte prosopis (Prosopis juliflora) is a benign organic fertilizer. Journal of Hazardous Materials, 122864.

    Google Scholar 

  18. Tauseef, S. M., Tabassum-Abbasi, Patnaik, P., Tasneem Abbasi, T., & Abbasi, S. A., (2021). A novel high-rate vermicomposting machine for downstream processing of biorefinery waste and other forms of organic solid waste, Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-021-01522-w.

  19. Franks, N. R., Worley, A., Grant, K. A., Gorman, A. R., Vizard, V., Plackett, H., et al. (2016). Social behaviour and collective motion in plant-animal worms. Proceedings of the Royal Society B: Biological Sciences, 283(1825), 20152946.

    Article  Google Scholar 

  20. Wilson, E. O. (2000). Sociobiology: The new synthesis. Harvard University Press.

    Google Scholar 

  21. Lorenz, K. (1966). On aggression: Konrad Lorenz; translated by Marjorie Kerr Wilson. Harcourt, Brace & World.

    Google Scholar 

  22. Edwards, C. A., & Bohlen, P. J. (1996). Biology and ecology of earthworms (Vol. 3). Springer Science & Business Media.

    Google Scholar 

  23. Zirbes, L., Deneubourg, J. L., Brostaux, Y., & Haubruge, E. (2010). A new case of consensual decision: collective movement in earthworms. Ethology, 116(6), 546–553.

    Article  Google Scholar 

  24. Zirbes, L., Brostaux, Y., Mescher, M., Jason, M., Haubruge, E., & Deneubourg, J. L. (2012). Self-assemblage and quorum in the earthworm Eisenia fetida (Oligochaete, Lumbricidae). PLoS ONE, 7(3),

    Article  Google Scholar 

  25. Daisy, N. G., Subramanian, E. R., Christyraj, J. D. S., Mani, D. K. S., Christyraj, J. R. S. S., Ramamoorthy, K., et al. (2016). Studies on regeneration of central nervous system and social ability of the earthworm Eudrilus eugeniae. Invertebrate Neuroscience, 16(3), 1–13.

    Google Scholar 

  26. Bargmann, C. I., Hartwieg, E., & Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3), 515–527.

    Google Scholar 

  27. Zirbes, L., Mescher, M., Vrancken, V., Wathelet, J. P., Verheggen, F. J., Thonart, P., et al. (2011). Earthworms use odor cues to locate and feed on microorganisms in soil. PLoS ONE, 6(7),

    Article  Google Scholar 

  28. Curry, J. P., & Schmidt, O. (2007). The feeding ecology of earthworms–a review. Pedobiologia, 50(6), 463–477.

    Article  Google Scholar 

  29. De Bono, M., & Bargmann, C. I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94(5), 679–689.

    Google Scholar 

  30. Sandhu, P., Shura, O., Murray, R. L., & Guy, C. (2018). Worms make risky choices too: The effect of starvation on foraging in the common earthworm (Lumbricusterrestris). Canadian Journal of Zoology, 96(11), 1278–1283.

    Article  Google Scholar 

  31. Lee, K. E. (1985). Earthworms: Their ecology and relationships with soil and land use. Academic Press, Sydney. Earthworms: Their ecology and relationships with soil and land use. Academic Press, Sydney.

    Google Scholar 

  32. Hoeffner, K., Monard, C., Santonja, M., & Cluzeau, D. (2018). Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biology & Biochemistry, 125, 1–9.

    Article  Google Scholar 

  33. Shipitalo, M. J., Protz, R., & Tomlin, A. D. (1988). Effect of diet on the feeding and casting activity of Lumbricusterrestris and L. rubellus in laboratory culture. Soil Biology and Biochemistry 20(2), 233–237.

    Google Scholar 

  34. Wright, M. A. (1972). Factors’ governing ingestion by the earthworm Lumbricusterrestris (L.), with special referencto apple leaves. Annals of Applied Biology 70(2), 175–188.

    Google Scholar 

  35. Edwards, C. A., & Lofty, J. R. (1977). Earthworms as pests and benefactors. In Biology of Earthworms (pp. 222–230). Springer, Boston, MA.

    Google Scholar 

  36. Hendriksen, N. B. (1990). Leaf litter selection by detritivore and geophagous earthworms. Biology and Fertility of Soils, 10(1), 17–21.

    Google Scholar 

  37. Šlapokas, T., & Granhall, U. (1991). Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biology and Fertility of Soils, 10(4), 241–248.

    Article  Google Scholar 

  38. Westernacher, E., & Graff, O. (1987). Orientation behaviour of earthworms (Lumbricidae) towards different crops. Biology and Fertility of Soils, 3(1–2), 131–133.

    Google Scholar 

  39. Anderson, M. (1994). Sexual selection. Princeton, N.J.: Princeton University Press.

    Book  Google Scholar 

  40. Sims, R. W., & Gerard, B. M. (1985). Earthworms: Keys and notes for the identification and study of the species (Vol. 31). Brill Archive.

    Google Scholar 

  41. Nuutinen, V., & Butt, K. R. (1997). The mating behaviour of the earthworm Lumbricusterrestris (Oligochaeta: Lumbricidae). Journal of Zoology, 242(4), 783–798.

    Article  Google Scholar 

  42. Velando, A., Eiroa, J., & Domínguez, J. (2008). Brainless but not clueless: earthworms boost their ejaculates when they detect fecund non-virgin partners. Proceedings of the Royal Society B: Biological Sciences 275(1638).

    Google Scholar 

  43. Domínguez, J., & Velando, A. (2013). Sexual selection in earthworms: Mate choice, sperm competition, differential allocation and partner manipulation. Applied Soil Ecology, 69, 21–27.

    Article  Google Scholar 

  44. Ressler, R. H., Cialdini, R. B., Ghoca, M. L., & Kleist, S. M. (1968). Alarm pheromone in the earthworm Lumbricus terrestris. Science, 161(3841), 597–599.

    Article  Google Scholar 

  45. Hendrix, P. F., Callaham, M. A., Jr., Drake, J. M., Huang, C. Y., James, S. W., Snyder, B. A., et al. (2008). Pandora’s box contained bait: the global problem of introduced earthworms. Annual Review of Ecology Evolution and Systematics, 39, 593–613.

    Article  Google Scholar 

  46. Bohlen, P. J., Scheu, S., Hale, C. M., McLean, M. A., Migge, S., Groffman, P. M., et al. (2004). Non-native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment, 2(8), 427–435.

    Article  Google Scholar 

  47. Eijsackers, H. (2010). Earthworms as colonisers: primary colonisation of contaminated land, and sediment and soil waste deposits. Science of the Total Environment, 408(8), 1759–1769.

    Article  Google Scholar 

  48. Lawrence, B., Fisk, M. C., Fahey, T. J., & Suárez, E. R. (2003). Influence of nonnative earthworms on mycorrhizaln colonization of sugar maple (Acer saccharum). New Phytologist, pp. 145–153.

    Google Scholar 

  49. Eijsackers, H. (2011). Earthworms as colonizers of natural and cultivated soil environments. Applied Soil Ecology, 50, 1–13.

    Article  Google Scholar 

  50. Capowiez, Y., Rault, M., Mazzia, C., & Belzunces, L. (2003). Earthworm behaviour as a biomarker-a case study using imidacloprid. Pedobiologia, 47(5–6), 542–547.

    Google Scholar 

  51. Pereira, J. L., Antunes, S. C., Ferreira, A. C., Goncalves, F., & Pereira, R. (2010). Avoidance behavior of earthworms under exposure to pesticides: is it always chemosensorial? Journal of Environmental Science and Health Part B, 45(3), 229–232.

    Article  Google Scholar 

  52. Hund-Rinke, K., & Wiechering, H. (2001). Earthworm avoidance test for soil assessments. Journal of Soils and Sediments, 1(1), 15–20.

    Article  Google Scholar 

  53. Stander, A. H., le Roux, A., & Otomo, P. V. (2019). Can local enhancement in earthworms affect the outcome of the standard earthworm avoidance test?. Bulletin of Environmental Contamination and Toxicology 103(6), 776–782.

    Google Scholar 

  54. Ji, C. W., Park, Y. S., Cui, Y., Wang, H., Kwak, I. S., & Chon, T. S. (2020). Analyzing the response behavior of Lumbriculus variegatus (Oligochaeta: Lumbriculidae) to different concentrations of copper sulfate based on line body shape detection and a recurrent self-organizing map. International Journal of Environmental Research and Public Health, 17(8), 2627.

    Article  Google Scholar 

  55. Lee, S. H., Kim, E. Y., Hyun, S., & Kim, J. G. (2009). Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. Journal of Hazardous Materials, 170(1), 382–388.

    Article  Google Scholar 

Download references

Acknowledgements

SAA thanks Indian National Science Academy (INSA), New Delhi and T-A thanks the authorities of UPES, Dehradun, for support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patnaik, P., Ghazala, D., Abbasi, S.A., Tabassum-Abbasi, Abbasi, T. (2022). Social Behavior of Earthworms in the Context of Their Use in Bioremediation. In: Siddiqui, N.A., Tauseef, S.M., Abbasi, S.A., Dobhal, R., Kansal, A. (eds) Advances in Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-4400-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4400-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4399-6

  • Online ISBN: 978-981-16-4400-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics