Skip to main content

A Brief Survey on Metamaterial Antennas: Its Importance and Challenges

  • Conference paper
  • First Online:
Futuristic Communication and Network Technologies (VICFCNT 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 792))

Abstract

Metamaterials are opening a new way of refining the material science and related areas. Metamaterials broke the limitation of naturally occurring substances by artificially creating the desired material properties. This chapter presents a brief survey on metamaterials and their importance in the area of antenna design. Metamaterials in fractal antenna geometries, their applications in different areas are discussed. A brief discussion on metamaterial parameter extracting methods, different metamaterial geometries, challenges, and the way forward is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song X-H, Wu W-Y, Shen T-G, Zhou Y-Q, Investigation of a patch antenna based on I-shaped left-handed material. https://doi.org/10.1016/j.ijleo.2010.09.02

  2. Sharma R, Singh H (2015) Design of 8 - shaped DNG metamaterial for GSM 1.8 GHz applications: IJISET Int J Innov Sci Eng Technol 2(8)

    Google Scholar 

  3. Dwivedi S, Mishra V, Kosta YP (2012) Metamaterial inspired patch antenna miniaturization technique for satellite. In: 1st international conference on emerging technology trends in electronics, communication and networking

    Google Scholar 

  4. Kumar H, Kanth RK, Liljeberg P, Tenhunen H (2011) Metamaterial based slotted patch antenna. In: 10th international conference on telecommunication in modern satellite cable and broadcasting services (TELSIKS), 5–8 Oct. 2011

    Google Scholar 

  5. Jacob SB, Khot UP (2014) Frequency-tunable metamaterial for microstrip patch antenna. In: 2014 international conference on circuits systems communication and information technology applications

    Google Scholar 

  6. Varma R, Sharma SK (2014) Improvement in rectangular microstrip patch antenna parameters using metamaterial with active devices. 978-1-4799-6052-1/14/$31.00 ©2014

    Google Scholar 

  7. Das S, Sahu S, Design of high gain, broadband resonant cavity antenna with meta-material inspired superstrate. Int J Electron Commun https://doi.org/ https://doi.org/10.1016/j.aeue.2018.12.021

  8. Akçelik H, Yücedağ OM, Torun E, Koçer H, A metamaterial based broadband microstrip. IEEE

    Google Scholar 

  9. Choudhury B, Manickam S, Jha RM (2013) Particle swarm optimization for multiband metamaterial fractal antenna. Hindawi Publ Corp J Optim 2013, Article ID 989135, 8 pages. https://doi.org/10.1155/2013/989135

  10. Zarghooni B, Denidni TA (2014) New fractal metamaterial unit-cell for microwave applications. In: The 8th European conference on antennas and propagation (EuCAP 2014)

    Google Scholar 

  11. Ahmed MI, Ahmed MF, Shaalan AA, A novel wearable metamaterial fractal antenna for wireless applications. IEEE

    Google Scholar 

  12. Krzysztofik WJ, Fractals in antennas and metamaterials applications. Fractal Anal Appl Phys Eng Technol. https://doi.org/10.5772/intechopen.68188

  13. Smith K, Adams R (2018) A broadband negative epsilon fractal metamaterial unit cell for coaxial notch filter applications. Progr Electromagnet Res C 86:257–267

    Google Scholar 

  14. Fan S, Song Y (2018) UHF metamaterial absorber with small-size unit cell by combining fractal and coupling lines. Hindawi Int J Antennas Propag 2018, Article ID 9409152, 9 pages https://doi.org/10.1155/2018/9409152

  15. Garoli D, Calandrini E, Bozzola A, Toma A, Cattarin S, Ortolani M, De Angelis F, Fractal-like plasmonic metamaterial with a tailorable plasma frequency in the near-infrared. https://doi.org/10.1021/acsphotonics.8b00676 ACS Photonics

  16. Man X, Liu T, Xia B, Luo Z, Xie L, Liu J (2018) Space-coiling fractal metamaterial with multi-bandgaps on ubwavelength scale. J Sound Vibr 423:322–339

    Google Scholar 

  17. Du Q et al (2018) H-fractal seismic metamaterial with broadband low-frequency bandgaps. J Phys D Appl Phys (in press) https://doi.org/10.1088/1361-6463/aaaac0

  18. Fedotov V, Metamaterials. Springer handbook of electronic and photonic materials. https://doi.org/10.1007/978-3-319-48933-9_56

  19. Ginis V, Tassin P, Veretennicoff I, Amplifying optical gradient forces with metamaterials. 978-1-4577-0733-9/12/$26.00 ©2012 IEEE

    Google Scholar 

  20. Liu AQ, Zhu WM, Tsai DP, Zheludev NI, Micromachined tunable metamaterials: a review. IOP Publ J Opt. https://doi.org/10.1088/2040-8978/14/11/114009

  21. Felbacq D, Antezza M (2012) Quantum metamaterials: a brave new world, https://doi.org/10.1117/2.1201206.004296 2012 SPIE

  22. Metamaterial wall amplifies sound: Phys Rev Lett 110:244302 (2013) JUNE 2013 | Vol 498 | Nature | 411

    Google Scholar 

  23. Larouche S, Rose A, Smith DR, A constitutive description of nonlinear metamaterials through electric, magnetic, and magnetoelectric nonlinearities. Springer Series in Materials Science 200. https://doi.org/10.1007/978-3-319-08386-5_1

  24. Bogue R, Sensing with metamaterials: a review of recent developments. https://doi.org/10.1108/SR-12-2016-0281

  25. Szabó Z, Park G-H, Hedge R, Li E-P (2010) A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans Microwave Theory Techn 58(10)

    Google Scholar 

  26. Arslanagić S, Hansen TV, Mortensen NA, Gregersen AH, Sigmund O, Ziolkowski RW, Breinbjerg O (2013) A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag Mag 55(2):95

    Article  Google Scholar 

  27. Chen X, Grzegorczyk TM, Wu B-I, Pacheco J, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. The American Physical Society, Phys Rev E 70:016608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chindhi, P.S., Kalkhambkar, G.B., Rajani, H.P., Khanai, R. (2022). A Brief Survey on Metamaterial Antennas: Its Importance and Challenges. In: Sivasubramanian, A., Shastry, P.N., Hong, P.C. (eds) Futuristic Communication and Network Technologies. VICFCNT 2020. Lecture Notes in Electrical Engineering, vol 792. Springer, Singapore. https://doi.org/10.1007/978-981-16-4625-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4625-6_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4624-9

  • Online ISBN: 978-981-16-4625-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics